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Abstract. Inverse source problems in divergence form consist in finding a vector field
with prescribed support S, whose divergence is the Laplacian of some observed potential.
In this paper, we assume the unknown vector field is a vector-valued measure, and we
study the corresponding least square inversion problems, regularized by penalizing the
total variation, without discretizing the criterion nor the unknown. We prove that this
problem that this problem has a unique minimizer in the case where S is a so-called
slender set; i.e., it has zero Lebesgue measure and each connected component of its
complement has infinite Lebesgue measure. The proof dwells on Smirnov’s decomposition
of divergence-free measures [28] that quickly turns the paper into a measure-geometric
one.

1. Introduction

Inverse source problems in divergence form consist, roughly speaking, in finding a vector
field with prescribed support whose divergence is the Laplacian of some observed poten-
tial. They arise in various contexts, for instance Geomagnetism and Paleomagnetism, or
else Medical Imaging from Electro-Encephalography (EEG) [8, 22, 3, 17, 30, 27, 23]. Such
problems are severely ill-posed and solutions highly non-unique in general, making reg-
ularization techniques an essential aspect of every approach. In this paper, we assume
the unknown vector field is a vector-valued measure and we study the corresponding least
square inversion problems, regularized by penalizing the total variation, without discretiz-
ing the criterion nor the unknown.

This is in contrast with approaches where the model gets discretized in the first place,
so as to deal only with a finite-dimensional optimization scheme [2, 18, 9, 24]. The un-
satisfactory side of doing so is that, when the dimension is infinite, discretization involves
an approximation of the underlying operators that interacts in a convoluted manner with
regularization (which is another kind of approximation) and may affect inversion in ad-
verse ways. This is documented in several works at a general functional level and from
a statistical viewpoint [19, 11, 1], moreover thorough discussions are available for cer-
tain elliptic equations with Tikhonov-like regularization [25, 29, 15], but the phenomenon
seems much less studied when the forward operator is non-injective. In fact, when the
forward operator has nontrivial kernel, discretization typically turns it into some injective
but ill-conditioned matrix, whereas the very structure of the kernel could be used to design
regularization schemes and define suitable notions of sparsity or of minimal solutions. The
situation that we consider is exactly of this type.
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Our setting is a particular instance of the one in [10], but we will prove more than
could be deduced from that general reference when the forward operator is not injective
and the so-called source condition does not hold, as is the case here. Altogether, we shall
discuss recovery of some unknown RN -valued measure carried by a compact subset S of
RN (the sample), from knowledge of (a directional derivative of) the Newton potential of
its divergence on another compact subset Q of RN (the measurement slab). In applications
that we have in mind, one would set N = 3 but this does not simplify the matter. Typical
examples stem from inverse magnetization problems arising in Paleomagnetism, and this
will be a model case for us [20, 16], but the paper makes room for more general frameworks.
That is to say, for fixed λ > 0 and f ∈ L2(Q) with Q ⊂ RN , we study minimizers of the
functional

(1) µ 7→ ∥f − Aµ∥2L2(Q) + λ∥µ∥TV

when µ ranges over RN -valued measures supported on a given compact set S ⊂ RN ,
disjoint from Q, where A is the operator mapping µ to v · ∇u with v a fixed unit vector
and the potential u solves δu = divµ, while ∥µ∥TV is the total variation of the measure µ.

Total variation regularization for such problems was considered in [6, 5], and shown there
to be consistent for recovering certain classes of measures that may be called sparse; e.g.,
those with finite (more generally: purely 1-unrectifiable) support. These results assume
that the sample S is a so-called slender set; i.e., it has zero Lebesgue measure and each
connected component of its complement has infinite Lebesgue measure. As is customary in
the literature on identification and inverse problems, consistency means that any sequence
of minimizers of (1) converges to the unknown measure µ0 such that Aµ0 = f0 when
both the regularization parameter λ and the measurement error ∥f − f0∥L2(Q) go to zero,
assuming that the latter decays faster than a suitable function (in our case the square
root) of the former (the Morozov discrepancy rule). Here, the convergence is stronger than
the usual weak-∗ convergence of measures, for in addition to the latter the total variation
along the sequence converges to the total variation of the limit; i.e., despite the amount of
cancellation that may occur in the weak-∗ limit, no mass is “lost” in the process.

In the particular case where S is contained in a plane, it was further proven in [5] that
(1) has a unique minimizer, whatever the data f . In the present work, we extend this
result to the case where S is slender, but not necessarily contained in a plane. That is
to say: in the slender case, the regularized criterion has a unique minimizer. On the one
hand, the minimization problem under consideration is convex but not strictly convex and
the property just mentioned is not obvious: its proof dwells on Smirnov’s decomposition of
divergence-free measures [28] that quickly turns the paper into a measure-geometric one.
On the other hand, we want to stress its relevance from an inverse problem perspective
as follows. In applications, the regularized criterion (1) must be discretized into a finite-
dimensional one, and uniqueness of a minimizer will ensure convergence of the minimum
places of the discretized criteria to the minimizer of (1), for fixed value of the regularization
parameter λ, when the discretization gets refined over and over. It is so because reasonable
discretization schemes will produce subsequential convergence of discrete minimizers to a
minimizer of (1) (from any subsequence one can extract a convergent subsequence), and
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then uniqueness of the limit entails convergence of the whole sequence. In this paper
we do not discuss the derivation of such convergent discretization schemes; the authors
will report on such issues in [4]. Here, we merely stress that the uniqueness result to be
proven below allows one to design consistent recovery schemes for sparse inverse source
problems in divergence form, via a sequence of discrete, finite-dimensional optimization
problems. Note that the existence of a sparse solution in the sense of [6, 5] is here essential
to ascertain consistency of a recovery scheme based on minimizing (1), but that such an
infinite-dimensional notion of sparsity is completely different from the sparse character
of minimizers of the discretized criterion (that can essentially always be achieved, since
discrete measures are weak∗ dense in the space of measures, but implies nothing on the
sparsity of the measure to be recovered).

2. Preliminaries and notation

Let N be a positive integer and S a compact subset of RN . We let C(S) denote the
real-valued continuous functions on S and M(S) the finite signed Borel measures on RN

supported on S. Equipped with the total variation norm ∥ · ∥TV , M(S)N is a Banach

space, dual to C(S)N under the pairing ⟨µ,φ⟩ =
∑N

i=1

∫
φidµi, with µi and φi to mean

the components of µ and φ respectively. We also consider M(S)N as a Fréchet space
endowed with the weak-star topology, the dual of which is C(S)N [26, Theorem 3.10].

Furthermore, for a µ ∈ M(S)N , we will let |µ| denote its total variation measure and
uµ the Radon-Nikodym derivative of µ with respect to |µ|, so we have, dµ = uµd|µ|.

As a short hand, for a scalar measure µ ∈ M(S) and a vector function φ ∈ C(S)N , we

will let ⟨µ,φ⟩ :=
∑N

i=1⟨µ, φi⟩ei, where ei is the i-th canonical unit vector.
For a < b, we let Lip([a, b]) denote the space of Lipschitz maps γ : [a, b] → R. We

call the elements of Lip([a, b])N parametrized rectifiable curves. We further let Lip1([a, b])
denote the subset of Lipschitz maps with Lipschitz constant less than or equal to 1. From
the Arzela-Ascoli theorem [12, Theorem 4.7], it follows that Lip1([a, b]) is locally compact
when equiped with the uniform norm.

For the following definitions, fix a γ ∈ Lip([a, b])N ; if we put #(γ, x) for the cardinality
(finite or infinite) of the preimage γ−1(x), then the length ℓ(γ) of γ is

(2) ℓ(γ) :=

∫ b

a
|γ ′(t)| dt =

∫
#(γ, x) dη1(x),

where γ ′ denotes the derivative of γ and η1 means 1-dimensional Hausdorff measure nor-
malized to coincide with standard arc length, and the second equality follows from the area
formula [14, 3.2.3]. We also define π(γ) = πγ ∈ M(Rn)n by

(3) ⟨πγ , g⟩ :=
∫ b

a
g(γ(t)) · γ ′(t)dt =

∫
Γ

 ∑
t∈γ−1(x)

g(x) · γ ′(t)

 dη1(x), g ∈ C(Rn)n,

where the second equality again follows from the area formula.
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For each ℓ > 0, consider the collection Cℓ of those πγ associated to a parametrized
rectifiable curve γ of length ℓ that satisfy ∥πγ∥TV = ℓ, and equip Cℓ with the weak-star
topology. Since πγ is absolutely continuous with respect to the restriction η1⌊γ([a, b]), we
may consider the Radon-Nikodym derivative τ of πγ with respect to η1 and we remark in
view of (3) that τ (x) =

∑
t∈γ−1(x) γ

′(t) for η1-a.e. x ∈ γ[a, b]. Therefore, if γ ∈ Lip1([a, b]),

then γ ∈ Cℓ(γ) if and only if |τ (x)| = #(γ, x) for a.e. x ∈ γ([a, b]), by (2); that is, if and
only if uπγ (γ(t)) = γ ′(t) for a.e. t ∈ [0, ℓ] (entailing that γ ′(t) depends only on γ(t) for
almost every t). One can check that for every ρ ∈ Cℓ, there is a unit length parametrized
rectifiable curve γ such that ρ = πγ .

Now, suppose that µ ∈ M(RN )N is a solenoid, i.e. that ∇·µ = 0; i.e., µ is divergence-
free as a distribution. Then, it follows from [28, Theorem A] that µ can be decomposed
into elements from Cℓ, for any ℓ > 0. That is, there is a positive finite Borel measure Ξ on
Cℓ such that Ξ-a.e. πγ is supported in suppµ, and for each Borel set B ⊂ RN :

(4) µ(B) =

∫
Cℓ
πγ(B) dΞ(πγ), |µ|(B) =

∫
Cℓ
|πγ |(B) dΞ(πγ).

1

3. Results on divergence free measures

We shall need the continuity of the map π just defined:

Lemma 3.1. The map π : Lip1([a, b])
N → M(Rn)n is continuous when M(Rn)n is en-

dowed with the weak-star topology.

Proof. Let {γn}n∈N∗ ⊂ Lip1([a, b])
N converge uniformly to γ0 ∈ Lip1([a, b])

N . Define the
map π : Lip1([a, b])

N → M([a, b])N for any γ ∈ Lip1([a, b])
N by dπ(γ)(t) := γ ′(t)dt,

where dt is the differential of 1-dimensional Lebesgue measure. As Lipschitz functions are
absolutely continuous, for any subinterval (s, t) ⊂ [a, b] we get γ(t) − γ(s) = π(γ)((s, t))
and similarly for closed intervals. Thus, π(γn)(O) → π(γ)(O) for each relative open subset
O of [a, b], therefore π(γn) → π(γ0) weak-star as n→ ∞ because the π(γn) have uniformly
bounded total variation, hence {π(γn)}n∈N∗ is relatively weak-star compact in M(Rn)n by
the Banach-Alaoglu theorem, but π(γ0) is the only possible limit point.

Now, pick f ∈ C(S) and ε > 0. Let M, δ > 0 and the integer m be such that, for any
n > m, one has:

(i) | ⟨ π(γn)− π(γ0), f ◦ γ0 ⟩ | < ε
2 ,

(ii) ∥γ0 − γn∥∞ < δ,
(iii) for any x, y ∈ S with |x− y| < δ, it holds that |f(x)− f(y)| < ε

2(b−a) .

Thus, remembering that |γ ′| ≤ 1 for any γ ∈ Lip1([a, b])
N , we have that

| ⟨ πγn
− πγ0

, f ⟩ | =
∣∣∣∣ ∫ b

a
f(γn(t)) · γ ′

n(t) dt−
∫ b

a
f(γ0(t)) · γ ′

0(t) dt

∣∣∣∣
1In [28], Smirnov states his decomposition in terms of integration against test functions, but ours easily

follows from his by approximation of characteristic functions.
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≤
∣∣∣∣ ∫ b

a
f(γn(t)) · γ ′

n(t) dt−
∫ b

a
f(γ0(t)) · γ ′

n(t) dt

∣∣∣∣
+

∣∣∣∣ ∫ b

a
f(γ0(t)) · γ ′

n(t) dt−
∫ b

a
f(γ0(t)) · γ ′

0(t) dt

∣∣∣∣
≤

∫ b

a
|f(γn(t))− f(γ0(t))| dt+ | ⟨ π(γn)− π(γ0), f ◦ γ0 ⟩ | < ε.

Therefore, the map π is uniform to weak-star continuous. □

Remark 1. Taking γ ∈ Lip([a, b])N with πγ ∈ Cℓ, note that ∇·πγ = δγ(b) − δγ(a), i.e. the

difference of the Dirac’s delta at γ(b) minus the one at γ(a). Also, if we take γ̃ ∈Lip([ã, b̃])N
such that πγ = πγ̃ , we get that, if γ(a) ̸= γ(b), then, γ(a) = γ̃(ã) and γ(b) = γ̃(b̃).
In particular, to any ν ∈ Cℓ which is not divergence-free, there is a unique Lipschitz
γ : [0, ℓ] → RN with |γ ′|(t) = 1 for a.e. t such that η = πγ . Finally, given any t ∈ [a, b]
and recalling that the uniform norm makes Lip1([a, b])

N a compact space, we get since
the evaluation map γ → γ(t) is continuous that it is also closed (images of closed sets are
closed) and, considering small translations of a curve in arbitrary directions, we see that it
is also an open map.

The following lemma is fundamental to our purposes. The main idea of the proof is to
find the set of curves in the decomposition (4) that we can paste together without exiting
the support of µ, and to show that the image of curves not belonging to this set have zero
|µ|-measure

Proposition 3.2. Let µ ∈ M(RN )N be a divergence free measure and let X be a set of
full |µ|-measure.

For |µ|-a.e. x ∈ X, there exists a Lipschitz continuous function fx : R→ RN such that
fx(t0) = x for some t0 ∈ R, and for a.e. t ∈ R, fx(t) ∈ X and f ′

x(t) = uµ(fx(t)).

Proof. Without loss of generality, we assume when πγ ∈ C1 that γ ∈ Lip([0, 1])N and that
it is parametrized by arc length. There exists a positive Borel measure Ξ on C1 such that
(4) is satisfied. Using (4) twice and Fubini’s theorem, we obtain∫

C1

∫
uµ · dπγ dΞ(πγ) =

∫
uµ · dµ = ∥µ∥TV = |µ|(R3) =

∫
C1

∥πγ∥TV dΞ(πγ).

Thus, using the Cauchy–Schwartz inequality, it follows that for Ξ-a.e. πγ ∈ C1 the equality
uµ = uπγ holds |πγ |-a.e. Hence, by definition of πγ , we get for Ξ-a.e. πγ ∈ C1 that the
identity uµ(γ(t)) = γ ′(t) holds for a.e. t ∈ [0, 1]. Now, using the right hand equality of
(4) to calculate |µ|(R3 \ X) we also get that for Ξ-a.e. πγ ∈ C1, |πγ |(R3 \ X) = 0, and
hence, for a.e. t ∈ [0, 1], γ(t) ⊂ X. Let then

X̃ := {πγ ∈ C1 : for a.e. t ∈ [0, 1], uµ(γ(t)) = γ ′(t) and γ(t) ⊂ X},
which has full Ξ-measure by what precedes. By the regularity of Borel measures on metric
spaces (see for example [7, Theorem 1.1]), we can find X ⊂ X̃ which is a countable union
of nested closed sets having full measure as well.
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Put CJ := {πγ ∈ C1 : γ(0) = γ(1)} for the set of closed curves in C1. We define
the beginning and ending points for a measure πγ as follows. Denoting the evaluation
functions at 0 and 1 by b and e respectively (for beginning and ending points), consider
the set functions b and e from subsets of C1 to subsets of RN given by b := b ◦ π−1 and
e := e ◦ π−1. By remark 1 it follows that

b({πγ}) =
{

{γ(0)} for πγ ∈ C1 \ CJ

γ([0, 1]) otherwise
and e({πγ}) =

{
{γ(1)} for πγ ∈ C1 \ CJ

γ([0, 1]) otherwise.

Abusing notation slightly, we shall write b(πγ) := γ(0) and e(πγ) := γ(1) for πγ ∈ C1\CJ .
Also, by remark 1, we get for πγ ∈ C1 \ CJ that ∇·πγ = δe(πγ) − δb(πγ), hence ∇· is
linear and continuous on the span of C1 with values in M(S)N (equiped wih the weak-star
topology) and thus, both b|C1\CJ and e|C1\CJ are weak-star continuous. Then, we can define

β, ϵ ∈ M(RN )+ (positive measures on RN ), such that for any ϕ ∈ C(RN ),

⟨β, ϕ⟩ :=
∫

C1\CJ

⟨δb(πγ), ϕ⟩ dΞ(πγ) and ⟨ϵ, ϕ⟩ :=
∫

C1\CJ

⟨δe(πγ), ϕ⟩ dΞ(πγ)

By definition of the weak divergence ∇·µ = ϵ − β, and since µ is divergence free we get
that ϵ = β. For a closed set B ⊂ RN , we get by outer regularity of finite Borel measures
on RN and Urysohn’s lemma that

β(B) =

∫
C1\CJ

δb(πγ)(B) dΞ(πγ) and ϵ(B) =

∫
C1\CJ

δe(πγ)(B) dΞ(πγ).

Moreover, by inner regularity of these measures, the equality above holds for any Borel set
B. Thus, for B a Borel set,

(5) β(B) =

∫
C1\CJ

χb−1(B)(πγ) dΞ(πγ) = Ξ(b−1(B) \ CJ ) and ϵ(B) = Ξ(e−1(B) \ CJ ).

We next define sets BF , EF ⊂ X ; roughly speaking, X \BF represents the set of all curves in
X that can be indefinitely extended backwards using other curves from X and, analogously,
X \ EF corresponds to curves in X that can be indefinitely extended forwards. This
extension may be done using infinitely many times the same curve, if necessary. First note
that by lemma 3.1 and remark 1, for any set U ∈ C1 that is either open or closed, e(U) is
also open or closed respectively. Now, start by defining B0 := {πγ ∈ C1 : b(πγ) ̸⊂ e(X )} =
b−1(RN \ e(X )) (corresponding to curves that do not begin where a curve of X ends) and
note that this set is a countable intersection of nested open sets, and thus, a Borel set;
proceeding inductively for each integer n > 0, assume that Bn−1 is a countable intersection
of nested open sets and let

Bn := b−1(e(Bn−1) \ e(X \ Bn−1))

(corresponding to curves that begin at a point that is an endpoint of a curve of Bn−1 and
of no curve in X that does not belong to Bn−1). Since Bn−1 is a countable intersection
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of nested open sets, so are e(Bn−1) and RN \ e(X \ Bn−1). Therefore, Bn defined above is
a countable intersection of nested open sets as well. Finally, let BF =

⋃
n Bn and define

analogously, exchanging b and e, the set EF . Note that both BF and EF are Borel subsets
of C1.

Since uπγ (γ(t)) = γ ′(t) for a.e. t ∈ [0, 1], for each πγ ∈ X \ (BF ∪ EF ) we can

extend γ to a Lipschitz continuous function f : R → supp(µ) such that f ′(t) = uµ(f(t))
a.e. on R. Now, let Y ⊂ X \ (BF ∪ EF ) be a countable union of closed sets such that
Ξ(Y) = Ξ(X \ (BF ∪ EF )); such a Y exists by inner regularity of Borel measures on metric
spaces. Equip the product space Lip1([0, 1])

N × [0, 1] with the norm ∥ · ∥∞+ | · |. Then, the
function Ev : Lip1([0, 1])

N × [0, 1] defined by Ev(γ, t) := γ(t), is continuous. Next, π−1(Y)
is a countable union of closed sets which, since Lip1([0, 1])

N is locally compact, can be
written as a countable union of compact sets. Thus, the set I := Ev(π−1(Y) × [0, 1]) is
also a countable union of compact sets and hence, a Borel set. Noticing that

I ⊂
⋃

γ∈π−1(X\(BF∪EF ))

γ([0, 1])

(the union of the images of the γ with πγ ∈ X \ (BF ∪EF )), it is enough to finish the proof
that we establish |µ|(I) = ∥µ∥TV .

First let us prove that Ξ(BF ) = 0. For this, note that B0 ∩ CJ ∩X is empty whence, by
(5),

β(RN \ e(X )) = Ξ(b−1(RN \ e(X )) \ CJ ) = Ξ(B0 \ CJ ) = Ξ(B0).

Analogously, one has

ϵ(RN \ e(X )) = Ξ(e−1(RN \ e(X )) \ CJ ) ≤ Ξ(C1 \ X ) = 0

and, since ϵ = β, we conclude that Ξ(B0) = 0. Now, assume for n > 0 that Ξ(Bn−1) = 0.
Then, by (5) again and the fact that β = ϵ,

Ξ(Bn) = Ξ(Bn \ CJ ) = β(e(Bn−1) \ e(X \ Bn−1)) = ϵ(e(Bn−1) \ e(X \ Bn−1))

= Ξ(e−1(e(Bn−1) \ e(X \ Bn−1)) \ CJ ) ≤ Ξ(Bn−1) = 0.

Thus, by induction, Ξ(BF ) = 0. An analogous argument shows that Ξ(EF ) = 0. Note that
for all πγ we have ∥πγ∥TV = 1, and also that ∥µ∥TV = Ξ(X ). Hence, by applying the
right equation of (4) to I, we obtain

|µ|(I) =
∫
C1

|πγ |(I) dΞ(πγ) ≥
∫
Y
|πγ |(I) dΞ(πγ) =

∫
Y
∥πγ∥ dΞ(πγ)

= Ξ(Y) = Ξ(X \ (BF ∪ EF )) = Ξ(X ) = ∥µ∥TV .

□
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4. Uniqueness of inverse problem

In this section, we will consider a linear operator A : M(S)N → H, where H is a real
Hilbert space, that is continuous in the weak-star topology on M(S)N . By the Banach-
Alaoglu Theorem, any TV-norm bounded sequence contains a weak-star convergent sub-
sequence and, hence, the weak-star continuity of A and the separability of C(S) (which
entails the metrizability of M(S)N with the weak-star topology) imply that A is compact;
i.e., A maps TV-norm bounded sets into precompact sets in H.

The focus of this paper is on the inverse problem associated with A; that is, estimate
µ given information about Aµ. It is well-known that the compactness of A makes this
an ill-posed problem and moreover, for our main motivation of magnetic source recovery
problems, A is not even injective. It is classical to use regularization methods to produce
‘good’ approximate solutions to Aµ = f by adjoining a penalty functional. In [6] and [5], we
considered regularization using the TV-norm and showed this is consistent for recovering
a certain class of measures including sparse measures, e.g., those with finite support (see
discussion below). Specifically, we consider for f ∈ H and λ > 0, the functional

(6) Fλ,f (µ) := ∥f − Aµ∥2H + λ∥µ∥TV .

Note that, since Fλ,f (0) = ∥f∥2H < ∞, then, by the Banach–Alaoglu theorem, Fλ,f has

a minimizer on the closed ball {∥µ∥TV ≤ ∥f∥2H/λ} ⊂ M(S)N .

Remark 2. Recall that a measure µ ∈ M(S)N minimizes Fλ,f if an only if it satisfies (cf
for instance [10])

(7)
A∗(f − Aµ) = λ

2uµ |µ|-a.e. and
|A∗(f − Aµ)| ≤ λ

2 everywhere on S.

Moreover, since Fλ,f is strictly convex, if µ′ ∈ M(S)N is another minimizer of Fλ,f then
A(µ′ − µ) = 0.

Let D∗(RN ) denote the space of distributions on RN . The following lemma is straight-
forward, so we omit the proof. Its assumptions are in particular satisfied in the setting of
inverse magnetization problems on slender samples, see [6].

Lemma 4.1. Let S,Q ⊂ RN be compact, ρ a positive measure with supp ρ = Q and r the
minimal distance between S and Q. Also take an injective and bounded integral operator
G : D∗(RN ) −→ L2(Q, ρ)M with an integration kernel G(x, y) that has bounded derivatives
and is C2 on {|x− y| ≥ r}. Let for x ∈ Q and µ ∈ M(S)N ,

A(µ)(x) := G(∇·µ)(x) = −
∫
DyG(x, y) dµ(y),

where DyG(x, y) is the differential of G with respect to y and the integration is done using
matrix multiplication. Then,

(i) A is weak-star continuous and its kernel consists of divergence free measures on
M(S)N ,
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(ii) letting O := {x ∈ RN : |x− y| < r for some y ∈ S} and, for every f ∈ L2(Q, ρ)M ,

g(y) := −
∫

G(x, y) · f(x) dρ(x), for y ∈ O,

we get that g ∈ C2(O) and ∇g extends A∗f .

The theorem below is our main result, and its assumptions are satisfied in slender sample
cases of the inverse magnetization problem, but we state the result in greater generality as
allowed by the argument of the proof.

Theorem 4.2. Let S ⊂ RN be compact and A : M(S)N → H be weak-star continuous.
Assume the following

(i) the kernel of A consists of divergence free measures on M(S)N ,
(ii) for every h ∈ H, there exist an open neighbourhood of S, say O ⊂ RN , together

with g ∈ C2(O) such that ∇g extends A∗h to O

Then for every f ∈ H and λ > 0, the functional Fλ,f has a unique minimizer over M(S)N .

Proof. Assume for a contradiction that µλ and µ̃λ are two distinct minimizers of Fλ,f and
let µ := µ̃λ − µλ. As µ is absolutely continuous with respect to |µ|, the Radon-Nykodim
decompositions of µλ and µ̃λ with respect to |µ| must have the same singular term. That
is, these decomposition are necessarily of the form

dµλ = ϕd|µ|+ dν, dµ̃λ = ϕ̃d|µ|+ dν,

where |ν| is singular with respect to |µ| and ϕ, ϕ̃ are |µ|-integrable RN -valued functions.
Put for simplicity ψ = (2/λ)(f−A(µλ)) = (2/λ)(f−A(µ̃λ)). Thanks to (7) we know that

uµλ
= A∗ψ and uµ̃λ

= A∗ψ, µλ and µ′
λ-a.e. respectively. Now, since d|µλ| = |ϕ|d|µ|+d|ν|

and d|µ̃λ| = |ϕ̃|d|µ|+ d|ν|, we have that

uµd|µ| = dµ = uµ̃λ
d|µ̃λ| − uµλ

d|µλ| = A∗ψd|µ̃λ| − A∗ψd|µλ| = A∗ψ(|ϕ̃| − |ϕ|)d|µ|.

Therefore uµ = A∗ψ(|ϕ̃| − |ϕ|) at |µ|-a.e point, and since |A∗ψ| ≤ 1 everywhere, by (7), it
holds that uµ(x) = ±xA

∗ψ(x) for |µ|-a.e. x, where the choice of sign ±x has a subscript
x to indicate that it may vary with x.

From remark 2 we know that Aµ = 0. Thus, by assumption (i), µ is divergence free and,
if we let X = {x ∈ supp |µ| : uµ(x) = ±xA

∗ψ(x)}, then using Lemma 3.2 we can find a
Lipschitz continuous function f : R→ RN such that, for a.e. t ∈ R, f(t) ∈ X and f ′(t) =
uµ(f(t)). Since suppµ is closed at it contains X, in fact we get that f(R) ⊂ suppµ, and
thus f(R) is compact.

Also, using now assumption (ii), there exist an open neighborhood of S, O ⊂ RN , and
a g ∈ C1(O) such that ∇g = A∗ϕ on S. Next will show that

(8) either f ′ = (A∗ψ) ◦ f or f ′ = −(A∗ψ) ◦ f .

In order to establish (8), by the connectedness of R, it is enough to prove that for any
t0 ∈ R there exists an open interval I0 ⊂ R containing t0 and on which (8) is satisfied.
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Since |∇g| = |A∗ψ| = 1 on the support of µλ, which contains the image of f , there
exist a i ∈ {1, 2, ..., N} such that ∂ig(f(to)) ̸= 0. Now, by the method of characteristics
(see for example [13, section 3.2.5]), there exist a neighborhood V of f(to) and, for j ∈
{1, 2, ..., N} \ i, C1 functions Fj on V that satisfy,{

∇Fj · ∇g = 0 on V
Fj(x) = xj on V ∩ {f(t0) + x | xi = 0}.

We further let Fi = g. Then, using the inverse function theorem, we can find a connected
neighborhood of f(t0), U ⊂ V such that the function F := (F1, F2, ..., FN ) is bi-Lipschitz
on U and [DF (x)]t∇g(x) = |∇g(x)|2ei, with superscript t to mean “transpose”. Now,
since for a.e. t ∈ R, f(t) ∈ X, we get that

±f(t)∇g(f(t)) = ±f(t)[A
∗ψ](f(t)) = uµ(f(t)) = uπf

(f(t)) = f ′(t), for a.e. t ∈ R.

Thus, (F ◦ f)′(t) = [DF (f(t))]t f ′(t) = ±f(t)ei for a.e. t ∈ R. Therefore, the fact that

(F ◦ f)(t2)− (F ◦ f)(t1) =
∫ t2

t1

(F ◦ f)′(t)dt whenever f([t1, t2]) ⊂ U and t1 ≤ t2

implies that

(9) (F ◦ f)(f−1(U)) ⊂ {(F ◦ f)(t0) + tei}.

Let I0 be an open interval such that t0 ∈ I0 and that its closure, I0, is contained in f−1(U).
We will show that γ := F ◦ f |I0 is injective by showing that the set

E := {x ∈ γ(I0) : #(γ, x) > 1}

is empty. First, we will show that for η1-a.e. x ∈ E, there exists a tx ∈ γ−1(x) such that
γ ′(tx) ̸= ±f(tx)ei. For this, fix x ∈ E and take any t1 ∈ γ−1(x). We may assume that x is
a regular value of γ, by Sard’s theorem for Lipschitz functions [21, Theorem 7.6].

If t1 = max(γ−1(x) \ {t1}) rename t1 by t2 and let t1 = max{t ∈ γ−1(x) : t < t2}.
Otherwise, let t2 = min{t ∈ γ−1(x) : t1 < t}. Note that if t1 = t2 and γ ′(t1) is well defined,
then γ ′(t1) = 0. Hence, for t1 = t2 we can let tx = t1. Now assume that t1 < t2. In view of
(9), for all t ∈ [t1, t2] there exists a s(t) ̸= 0 such that, γ(t)−γp(t2) = γ(t)−γ(t1) = s(t)ei.
Hence, the continuity of γ implies that the function s does not change sign in (t1, t2) and
thus, if both γ ′(t1) and γ ′(t2) are defined, it holds that γ ′(t1) = −γ ′(t2). Therefore, as x
is such that γ is differentiable at every point of γ−1(x) because it is a regular value, we
get for t1 < t2 that either tx = t1 or tx = t2 satisfies γ ′(tx) ̸= ±f(tx)ei.

Now, since for a.e. t ∈ R, (F ◦ f)′(t) = ±f(t)ei, the set {tx : x ∈ E} has 1-dimensional
Lebesgue measure zero. Hence, since γ is Lipschitz continuous with Lipschitz constant 1
and E = γ({tx : x ∈ E}), we get that η1(E) = 0 as well. Finally, using this result with (9)
and the intermediate value theorem on Fi ◦ f , we get that E is indeed empty, and thus, γ
is injective.

Then, the injectiveness of γ implies that either γ(t) = (t0 − t)ei or γ(t) = (t− t0)ei on
I0. Therefore, ±f(t) is constant on I0 and thus, as we mentioned above, the connectedness
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of R implies that ±f(t) is constant on R. However, for any two t1, t2 ∈ R,

(g ◦ f)(t2)− (g ◦ f)(t1) =
∫ t2

t1

∇g(f(t)) · f ′(t)dt = ±
∫ t2

t1

|∇g(f(t))|2dt = ±(t2 − t1)

which is not possible since g is continuous and hence bounded on the compact set f(R). □
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