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Abstract. We discuss recent results from [10] on sparse recovery for inverse potential problem
with source term in divergence form. The notion of sparsity which is set forth is measure-
theoretic, namely pure 1-unrectifiability of the support. The theory applies when a superset of
the support is known to be slender, meaning it has measure zero and all connected components
of its complement has infinite measure in R3. We also discuss open issues in the non-slender
case.

1. Introduction
Inverse potential problems with source term in divergence form consist in recovering a R3-valued
distribution µ, knowing the potential Φ of divµ which is the solution to the Poisson-Hodge
equation ∆Φ = divµ having “least growth” at infinity. In practice, a superset S of the support
of µ is known a priori, and sensors will measure the field ∇Φ rather than the potential Φ itself.

Issues of this kind typically arise in source identification from field measurements for
Maxwell’s equations, in the quasi-static regime. They occur for instance in electro-
encephalography (EEG), magneto-encephalography (MEG), geomagnetism and paleomag-
netism, as well as in several non-destructive testing problems, see e.g. [1, 2, 3, 4, 5] and their
bibliographies. A model problem of our particular interest is inverse scanning magnetic mi-
croscopy, as considered for instance in [9, 6, 7, 8] to recover magnetization distributions of thin
rock samples, but the considerations below are of a rather general and mathematical nature.

Such problems are known to be difficult, for they are not only ill-posed but the forward
operator, mapping µ to the field, is not even injective. Recently, in the preprint [10], notions
of sparsity have been introduced concerning µ, when the latter is a finite R3-valued measure.
They justify the use of Tikhonov-like regularization schemes that minimize the residuals while
penalizing the total variation norm, in order to asymptotically reconstruct a sparse measure µ
when the regularization parameter goes to zero, under a specific assumption on S: it should
be slender, meaning it has measure zero and each connected component of R3 \ S has infinite
measure.

This situation is reminiscent of compressive sensing, where sparse solutions to
underdetermined systems of linear equations in Rn (i.e. solutions having a large number of
zero components) are seeked by minimizing the residuals while penalizing the l1-norm; the gist
of this approach is that, for “most” large underdetermined systems, the solution with minimal
l1-norm is also the sparsest solution, see e.g. [11].
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However, in the present, infinite-dimensional context, it is unclear which assumption on µ
will ensure that it has minimum total variation among all solutions to the (noise-free) inverse
problem, and why such an assumption should connect with some kind of sparsity. In fact, the
answer to such questions will much depend on the null-space of the forward operator. In [10], the
assumption that S is slender is to the effect that this kernel consists exactly of divergence-free
R2-valued measures, also known as solenoids. Then, using a characterization of solenoids as
integrals of elementary ones supported on curves [12], a natural notion of sparsity is found that
ensures a sparse measure is mutually singular to all solenoids. This notion of sparsity which
pertains to geometric measure theory, namely the support of µ should be purely 1-unrectifiable;
roughly speaking this means it contains no rectifiable arc. For instance, a countable sum of Dirac
masses will satisfy this condition, but other, more complicated supports would also qualify.

The goal of this paper is to present main results from [10], and to discuss new issues arising
when S is not slender.

We mention that a general Tikhonov-like regularization theory was developed in [14, 15, 16]
for linear equations whose unknown is a Rn-valued measure, by minimizing the residuals
while penalizing the total variation. As expected from the non-reflexive character of spaces
of measures, consistency estimates hold in the sense of weak-∗ convergence of subsequences to
solutions of minimum total variation, or convergence in the Bregman distance when the so-called
source condition holds (which is, by the way, not the case here). In principle, such methods
yield algorithms to approximate a solution of minimum total variation to the initial equation by
a sequence of discrete measures, but imply nothing about the nature of limit points as discrete
measures are weak-∗ dense in the space of measures supported on an open subset of Rn.

We note also that an infinite-dimensional recovery result for sparse measures, in the sense
of being a sum of Dirac masses, was established in [17] for 1-D deconvolution issues, where a
train of spikes is to be recovered from filtered observation thereof. Thus, [10] does not state
the first sparse recovery result in an infinite-dimensional setting. It seems hoewever, that [10]
produces the first sparse recovery result for convolution operators in space-dimension greater
than 1. Moreover, we should stress in our case that the convolution kernel is singular and the
null-space of the forward operator has infinite dimension.

2. The inverse problem
Without loss of generality, we consider the issue of recovering a magnetization distribution
from a collection of measurements of the magnetic field the magnetization generates. For a
closed subset S ⊂ R3, let M(S) denote the space of finite signed Borel measures on R3 whose
support lies in S. We model magnetization distributions supported in S as R3-valued measures
µ ∈ M(S)3. Hereafter, we often call a member of M(S)3 a magnetization supported on S, as
this terminology is suggestive of the problems we adress.

The magnetic field b(µ) generated by a magnetization µ ∈M(S)3 is defined, at a point x not
in the support of µ, by the formula [18]:

b(µ)(x) := −c
(∫

1

|x− y|3
dµ(y)− 3

∫
(x− y)

(x− y) · dµ(y)

|x− y|5

)
x 6∈ supp µ, (1)

where c = 10−7Hm−1 and for x, y ∈ R3, x · y and |x| denote the Euclidean scalar product and
norm. Equivalently:

b(µ)(x) = −µ0∇Φ(µ)(x), x 6∈ supp µ, (2)

with µ0 = 4π × c and Φ(µ) is the scalar magnetic potential defined by

Φ(µ)(x) :=
1

4π

∫
∇y

1

|x− y|
· dµ(y) =

1

4π

∫
x− y
|x− y|3

· dµ(y). (3)
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and ∇y denotes the gradient with respect to y
Generally speaking, the inverse magnetization problem is to recover µ ∈ M(S)3, knowing

b(µ) in R3 \S. However b(µ) is usually measured on a rather small subset Q ⊂ R3 \S, typically
a compact surface patch. Also, in most cases, only one component of b(µ) can be measured,
because coils are oriented. For the sake of simplicity, we shall assume that S has connected
complement and is contained in the closed lower half-space H := {x = (x1, x2, x3)

T ∈ R3, x3 ≤
0}, while Q is a compact set of Hausdorff dimension greater than 1, contained in a horizontal
plane Πh at strictly positive height h. Also, the component of b(µ) which is measured will be
b3(µ), the third (vertical) one. This is the setting adopted in scanning magnetic microscopy
[9, 6, 7, 8]. One could also consider the case where S is a surface disconnecting the space (e.g. a
plane), in which case Q should intersect each component of R3 \ S and be contained in a union
of real analytic surfaces positively separated from S and satisfying mild conditions. We refer to
[10] for this more exhaustive framework.

Letting {ej , 1 ≤ j ≤ 3} indicate the canonical basis of R3, we get from (1) that

b3(µ)(x) := −µ0
4π

∫
K(x− y) · dµ(y), (4)

where

K(x) =
e3
|x|3
− 3x

x3
|x|5

= ∇
(
x3
|x|3

)
. (5)

We define the forward operator A :M(S)3 → L2(Q) by

A(µ)(x) := b3(µ)(x), x ∈ Q. (6)

Now, the inverse problem consists in recovering µ knowing A(µ).
Note that in practice, only pointwise values of b3(µ) can be estimated, whereas we assume

here knowledge of b3(µ) at each point of Q. We shall ignore this important issue, as it pertains
to a numerical approach of the problem which is beyond the scope of the present paper, devoted
to basic principles.

2.1. Slenderness and null-space of the forward operator
Let L3 denote Lebesgue measure on R3. We say that E ⊂ R3 is slender if L3(E) = 0 and any
connected component C of R3 \ E has L3(C) = +∞.

Clearly, the potential Φ(µ) defined by (3) is harmonic in R3 \ S, and so are the components
of b(µ). It is easy to check that Φ(µ) extends to a function in L2(R3) + L1(R3) (still denoted
Φ(µ)), and that b(µ) extends to a R3-valued divergence-free distribution [10, Prop. 2.1], with

∆Φ = divµ and b(µ) = µ0 (µ−∇Φ(µ)) . (7)

It is not difficult to check that A(µ) characterizes b(µ) completely, and we explain this in
the simple case where S has connected complement: if A(µ) = 0, then b3(µ) = 0 on Q and
consequently on the entire plane Πh, because it is real analytic in {x3 > 0}, being harmonic in
the upper half-space. Then, Φ is a harmonic function in the upper half-space which solves a
Neumann problem in {x3 > h} with vanishing normal derivative, hence it is constant and since
it lies in L2(R3) + L1(R3) it must be zero.

Still, A will generally have nontrivial null-space, because the mapping µ → b(µ) is typically
not injective. We say that µ, ν ∈ M(S)3 are S-equivalent if b(µ) and b(ν) agree on R3 \ S, in
which case we write µ ≡ ν[S]. A magnetization µ is said to be S-silent if µ ≡ 0[S]; i.e., if b(µ)
vanishes on R3 \ S.
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Since no nonzero harmonic function can lie in L2(R3) + L1(R3), by the mean value property
and Liouville’s theorem, it follows from (7) that a divergence µ belongs to the kernel of A. The
converse needs not hold in general, but it does if S is slender:

Theorem. If S is a slender set and µ is S-silent, then divµ = 0.
For a proof, we refer to [10, Thm. 2.2].
Corollary If S is slender, the null-space of A consists of all divergence-free R3-valued

measures on R3 that are supported on S.

2.2. Divergence-free measures, pure 1-unrectifiability and total variation
We let H1 indicate 1-dimensional Hausdorff measure, see [13] for a definition. A set E ⊂ R3 is
said to be 1-rectifiable if there exist Lipschitz maps fi : R→ R3, i = 1, 2, ..., such that

H1

(
E \

∞⋃
i=1

fi(R)

)
= 0.

A set B ⊂ R3 is purely 1-unrectifiable if H1(E ∩B) = 0 for every 1-rectifiable set E, see [19] for
these definitions. Clearly a set of H1-measure zero is purely 1-unrectifiable.

For µ ∈M(R3) the total variation measure |µ| is defined on Borel sets B ⊂ R3 by

|µ|(B) := sup
P

∑
P∈P
|µ(P )|, (8)

where the supremum is taken over all finite Borel partitions P of B. The total variation norm
‖µ‖TV is then defined as |µ|(R3).

The theorem below, which is crucial to the present approach of the inverse problem, entails
that a magnetization with purely 1-unrectifiable support is the unique element of minimal total
variation norm in its coset modulo the null-space of A.

Theorem Suppose S is slender. If µ ∈M(S)3 has support that is purely 1-unrectifiable and
ν ∈M(S)3 is S-equivalent to µ, then ‖ν‖TV > ‖µ‖TV unless ν = µ.

The proof rests on [12, Thm. A] which represents divergence-free measures as integrals of
elementary measures of the form Rγ(B) =

∫
B τd(H1bγ), where γ is an oriented Lipschitz arc

and τ its unit tangent, with H1bγ to mean the restriction of H1 to the image of γ.

3. Total variation regularization and consistency of sparse recovery
For µ ∈M(S)3, f ∈ L2(Q), and λ > 0, define

Ff,λ(µ) := ‖f −Aµ‖2L2(Q) + λ‖µ‖TV . (9)

To recover a magnetization µ∗ from measurements f of Aµ∗, we pick λ > 0 and consider the
following regularization scheme: to find µλ ∈M(S)3 such that

Ff,λ(µλ) = inf
µ∈M(S)3

Ff,λ(µ). (10)

More precisely, to account for measurement noise, we assume that f = fe = Aµ∗ + e and we
call µλ,e a minimizer of (10). It is easy to see that such a minimizer exists, and it follows from
[14, Thms. 2&5] or [15, Thm. 3.5&4.4] that any weak-* limit point of the family µλ,e as both

λ and ‖eλ−1/2‖L2(Q) tend to 0 is a magnetization ν such that Aν = Aµ∗ of minimum total
variation under this condition. In particular, if there is a unique such magnetization, we can
easily formulate a weak-* sequential consistency result in the zero-noise limit, by letting λn go
to zero more slowly than ‖en‖2L2(Q) (the so-called Morozov discrepancy principle).
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The theorem below dwells on this and on the previous theorem, but goes a little further in
that the convergence holds not only for µλ,e but also for |µλ,e|, which is important for recovery
(think of an oscillating density like einθ on the unit circle, which goes weak-* to 0 as n→∞ but
still has total variation 2π for each n). Moreover, convergence takes place in the narrow sense
(test functions should be continuous and bounded but need not have compact support).

Theorem Let S be slender and µ∗ ∈ M(S)3 have purely 1-unrectifiable support. Then, µλ,e
converges narrowly sequentially to µ∗ and |µλ,e| converges narrowly sequentially to |µ∗| as λ→ 0

and ‖e‖L2(Q)/
√
λ→ 0.

In light of the theorem, it is natural to ask in which context does pure 1-unrectifiability of
the support of a magnetization distribution have physical significance. We do not address this
important issue here.

4. Issues in the non slender case
A typical slender set is two-dimensional. It could be a piece of plane, or the entire plane, or it
could be a piece of sphere but not the entire sphere, nor a ball.
If S is a genuine 3-D object, like the interior of a compact surface Σ, then it is not slender and
the previous analysis fails. In fact, there are in this case magnetizations which are S-silent but
not divergence-free: an example when Σ is Lipschitz is given by the gradient of a function of
bounded variation inside Σ which has constant trace on Σ. Still, such a magnetization turns out
to be singular with measures with pure 1-unrectifiable support. It would be most interesting
to describe all silent magnetizations supported inside Σ. In this connection, we mention that
such magnetizations, if they have Lp density, must be the sum of a divergence-free field and a
gradient as above. For finite measures, however, no characterization is known.
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[12] S. K. Smirnov 1994, Decomposition of solenoidal vector charges into elementary solenoids, and the structure

of normal one-dimensional flows, St. Petersburg Math. J. 5, 841-67.
[13] L. C. Evans and R. F. Gariepy 1992, Measure theory and fine properties of functions, Studies in Advanced

Mathematics, CRC Press.
[14] M. Burger and S. Osher 2004, Convergence rates of convex variational regularization, Inverse Problems 20,

1411-21.
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