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INVERSE POTENTIAL PROBLEMS IN DIVERGENCE FORM FOR

MEASURES IN THE PLANE∗,∗∗

Laurent Baratchart1,***, Cristóbal Villalobos Guillén2

and Douglas P. Hardin3

Abstract. We study inverse potential problems with source term the divergence of some unknown
(R3-valued) measure supported in a plane; e.g., inverse magnetization problems for thin plates. We
investigate methods for recovering a magnetization µ by penalizing the measure-theoretic total vari-
ation norm ‖µ‖TV , and appealing to the decomposition of divergence-free measures in the plane as
superpositions of unit tangent vector fields on rectifiable Jordan curves. In particular, we prove for
magnetizations supported in a plane that TV -regularization schemes always have a unique minimizer,
even in the presence of noise. It is further shown that TV -norm minimization (among magnetizations
generating the same field) uniquely recovers planar magnetizations in the following two cases: (i) when
the magnetization is carried by a collection of sufficiently separated line segments and a set that is
purely 1-unrectifiable; (ii) when a superset of the support is tree-like. We note that such magnetizations
can be recovered via TV -regularization schemes in the zero noise limit by taking the regularization
parameter to zero. This suggests definitions of sparsity in the present infinite dimensional context, that
generate results akin to compressed sensing.
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1. Introduction

This paper considers inverse potential problems with source term in divergence form, in connection with the
structure of 2-D divergence-free measures in the plane. A typical application, and the main motivation of the
authors to carry out this research, is to inverse magnetization problems on thin plates. When magnetizations are
modelled by R3-valued measures supported on a set S (in the thin plate case S ⊂ R2), the inverse magnetization
problem consists in recovering such a measure, say µ, from knowledge of the magnetic field b(µ) that it generates,
see Section 1.1 for details. Magnetizations supported in a plane generate the zero magnetic field if and only
if they are tangent to that plane and divergence-free there (see Lems 2.1 and 2.2). Thus, the kernel of the
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forward operator mapping µ to b(µ) consists precisely of planar divergence-free measures in this case. Now,
a 2-D divergence-free measure ν in the plane can be decomposed as a superposition of elementary “loops”;
i.e., contour integrations along rectifiable Jordan curves, in such a way that the Radon-Nykodim derivative
dν/d|ν|(x) is essentially the unit tangent to any of these curves through x, (cf. Thm. 2.8). This result, which
is more precise (though limited to the planar case) than the general decomposition theorem for solenoids given
in [28], gives us insight on the structure of the kernel of the forward operator, enabling us to give sufficient
conditions for a magnetization to be TV -minimal on S; i.e., the magnetization has minimum total variation
among those magnetizations supported on S that generate the same field. When a TV -minimal magnetization
on S is unique among magnetizations generating the same field, we call it strictly TV -minimal on S. By standard
regularization theory, strictly TV -minimal magnetizations can in principle be recovered by solving a sequence of
minimization problems for the so-called regularizing functional, which is the sum of the quadratic residuals and a
penalty term consisting of the product of a regularization parameter λ > 0 and the total variation of the unknown
measure, see (1.4). Specifically, any sequence of minimizers of the regularizing functional converges weak-∗ to
the strictly TV -minimal measure generating the data (when it exists), as the regularizing parameter and the
noise tend jointly to zero in a suitable manner, see e.g. [11]. In short: regularizing schemes that penalize the total
variation are consistent to recover strictly TV -minimal magnetizations, and thus, any assumption ensuring strict
TV -minimality gives rise to a consistency result. For the larger class of magnetizations supported on a slender
set S (see Sect. 1.1 for a definition), such a consistency result is obtained in Theorem 2.6 of [7] by showing,
using results from [28], that magnetizations supported on a purely 1-unrectifiable set are strictly TV -minimal.
Specializing to the case of planar S and appealing to the above-mentioned loop decomposition, we shall obtain
more general conditions: for instance magnetizations carried by the union of a purely 1-unrectifiable set and a
collection of sufficiently separated line segments are strictly TV -minimal, see Corollary 3.4 and Theorem 3.2.

The results just mentioned are reminiscent of compressed sensing, where underdetermined systems of linear
equations in Rn are approximately solved by minimizing the residuals while penalizing the l1-norm. This favors
the recovery of sparse solutions (i.e., solutions having a large number of zero components) when they exist, see
e.g. [9, 19]. In this connection, the gist of Theorem 2.6 in [7] and Corollary 3.4 is to define notions of “sparsity” in
the present, infinite-dimensional context. Our results warrant the use of regularizing schemes that penalize the
total variation (a natural analog of the l1-norm), in order to recover magnetizations which are sparse according
to such definitions.

Our second application of the loop decomposition to inverse magnetization problems on thin plates is to
prove that, for each value of the regularization parameter, the minimizer of the regularizing functional is unique
(Thm. 3.8). This result is important for algorithmic approaches, because it tells us that for every choice of the
regularization parameter there is a unique estimate of the unknown magnetization based on the regularization
scheme (1.5). It is also surprising, for in the case that a magnetization is TV -minimal but not strictly TV
minimal, one would rather expect the regularizing functional to have several minimizers, at least for small
values of the regularizing parameter.

Let us stress that magnetizations supported in a plane are commonly considered in paleomagnetic studies,
where thin slabs of rock are modeled by planar regions [5, 23, 24, 30]. In particular, our analysis applies to this
setting. It would be quite interesting to carry over the contents of the present paper to more general slender
surfaces in R3 than planes, as the results could be of interest in other situations from geosciences or medical
imaging. In practice, the development of numerically effective algorithms for such inverse problem raises delicate
issues of discretization. These are not addressed in this paper, but will be taken up in future work.

The loop decomposition of planar divergence-free measures, which plays a fundamental role in our proofs, is
hinted at on page 843 of [28]. To the best of our knowledge, it was first shown in [29] along the lines suggested by
[28]. This method furnishes in addition a specific parametrization of the loops representing a given divergence-
free measure. Two other proofs of the general loop decomposition of divergence-free planar measures are given
in the manuscript [8], but without the above-mentioned parametrization. This parametrization is further refined
in the manuscript [6], whose version of the loop decomposition appears in the present paper as Theorem 2.8, see
the discussion in Section 2.3. This refinement is useful to establish Theorem 3.3, showing that measures carried
by a collection of sufficiently separated line segments are strictly TV -minimal.
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In the rest of this introductory section, we describe the inverse magnetization problem, explain our main
results and set up notation.

1.1. Background and overview of results

Let us first describe the inverse magnetization problem. For a closed subset S ⊂ R3, let M(S) denote the
space of finite signed Borel measures supported on S. We use the spaceM(S)3 of R3-valued measures supported
on S to model physical magnetizations distributed on S, and shall often speak of “magnetization on S” to mean
“element ofM(S)3”. For µ ∈M(S)3, we let |µ| denote the total variation measure of µ. The latter is a positive
measure, and we put ‖µ‖TV := |µ|(R3) for the total variation of µ, see Section 1.2.

The magnetic field b(µ) generated by a magnetization µ ∈M(S)3 is defined, at a point x not in the support
of µ, in terms of the scalar magnetic potential Φ(µ) by (see [22]):

b(µ)(x) = −µ0∇Φ(µ)(x), x 6∈ supp µ, (1.1)

where µ0 is the magnetic constant and ∇ indicates the gradient. Here, Φ(µ)(x) is given by

Φ(µ)(x) :=
1

4π

∫
∇y

1

|x− y|
· dµ(y) =

1

4π

∫
x− y
|x− y|3

· dµ(y), (1.2)

where, for x, y ∈ R3, x · y and |x| denote the Euclidean scalar product and norm and ∇y the gradient with
respect to y. Clearly, Φ(µ) and the components of b(µ) are harmonic functions on R3 \ S. Moreover, formula
(1.2) defines Φ(µ) on the whole of R3 as a member of L2(R3) +L1(R3) (see [7], Prop. 2.1) so that b(µ), initially
defined on R3 \ S, extends to a R3-valued divergence-free distribution on R3. Indeed, we may write

∆Φ = ∇·µ and b(µ) = µ0 (µ−∇Φ(µ)) , (1.3)

where ∇·µ indicates the divergence of µ. Note that (1.3) yields a Helmholtz-Hodge decomposition of µ, as the
sum of a gradient and a divergence-free distribution. However, neither term is a measure in general but rather
a distribution of order −1.

The inverse magnetization problem is to recover µ from measurements of b(µ) taken on a set Q ⊂ R3 \ S
which, due to the oriented nature of sensors (coils), are typically observed in one direction only, say along some
unit vector v ∈ R3. We assume for simplicity that v is the same at each measurement point. For instance, it
is usually so in Scanning Magnetic Microscopy experiments (SMM) where data consist of point-wise values of
the normal component of the magnetic field on a planar region not intersecting S, see [23, 24, 30]. Geometric
conditions on Q, S and v, ensuring that such measurements suffice to determine b(µ) in the entire region R3 \S,
are given in Lemma 2.3 of [7] and recalled when S is planar in Section 3.2, for the convenience of the reader. In
the remainder of this introduction, we assume that these assumptions are satisfied.

Still, the mapping µ→ b(µ) is generally not injective, which is a major difficulty with this inverse problem.
In this connection, we say that µ,ν ∈M(S)3 are S-equivalent if b(µ) and b(ν) agree on R3 \S. A magnetization
µ is said to be S-silent if µ is S-equivalent to the zero magnetization; i.e., if b(µ) vanishes on R3 \ S.

Since no nonzero harmonic function lies in L2(R3) + L1(R3), it follows from (1.3) that a divergence-free
magnetization is S-silent; here and below, the divergence is understood in the distributional sense. A partial
converse is given in Theorem 2.2 of [7], namely a S-silent magnetization is divergence-free provided that S is
slender, meaning it has Lebesgue measure zero and each connected component of R3 \ S has infinite Lebesgue
measure. The slenderness assumption is a strong one: for instance it rules out the case where S is a volumic
sample or a closed surface. However, it is satisfied in important special cases, for example in paleomagnetic
studies, as mentioned already, or in Geomagnetism where some regions of the Earth’s crust are assumed to be
non-magnetic (or much less magnetic) than the others [20], or even in Electro-Encephalography where sources
of primary current are often considered to lie on the surface of the encephalon (which is closed and therefore
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not slender) but their support should arguably leave out the brain stem connecting to the spinal cord (therefore
the support is contained in a slender set).

In [28], Smirnov describes Rn-valued divergence-free measures in Rn, also known as solenoids, in terms of
integrals of elementary components that are absolutely continuous with respect to 1-dimensional Hausdorff
measure H1. Consequently, if S is slender and µ ∈M(S)3 is carried by a purely 1-unrectifiable set (i.e., whose
intersection with any 1-rectifiable set has H1- measure zero, see [25]), then µ is mutually singular to every
S-silent magnetization and so has minimum total variation amongst all magnetizations that are S-equivalent
to µ. This observation led the authors in [7] to consider the following extremal problem involving the quantity
MS(µ), defined for µ ∈M(S)3 by

MS(µ) := inf{‖ν‖TV : ν is S-equivalent to µ}.

Extremal Problem 1. Given µ0 ∈M(S)3, find µ that is S-equivalent to µ0 satisfying

‖µ‖TV = MS(µ0).

A solution to Extremal Problem 1 is, by definition, TV -minimal on S, and it is strictly TV -minimal on S if
this solution is unique. When S ⊂ R3 is slender and µ0 ∈M(S)3, we find that µ0 is strictly TV -minimal on S
for the three cases listed below. Here case (a) is essentially ([7], Thm. 2.6) and a special case of Theorem 3.2 to
come, while (b) is contained in Theorem 2.11 of [7] and (c) follows from Corollary 3.4 further below.

(a) there is a purely 1-unrectifiable set of full |µ0| measure;
(b) the set S is a finite disjoint union of compact sets S1, . . . Sk and

µ0bSi = ui|µ0|bSi ,

for some collection of unit vectors u1, . . . ,uk ∈ R3, in which case we say µ0 is piecewise unidirectional;
(c) there is a set of full |µ0|-measure contained in a countable union of coplanar disjoint line segments Lk

such that the distance from any Lk to any Lj , j 6= k, is greater than or equal to H1(Lk).

Corollary 3.4 also implies that (a) can be combined with (c), namely if a measure satisfies (c) and we add to
it a measure on S carried by a purely 1-unrectifiable set, then we get a measure which is strictly TV -minimal
again.

Now, for ρ a positive measure on Q, let A :M(S)3 → L2(Q, ρ) be the forward operator mapping µ to the
restriction of b(µ) · v on Q (see (3.13)). The measure ρ does not play a significant role in what follows (e.g.,
it could be chosen to be Lebesgue measure on Q), but it is important for practical applications. To recover
solutions of Extremal Problem 1 knowing the restriction f of b(µ0) · v to Q, the theory of regularization for
convex problems [11] suggests to minimize with respect to µ ∈M(S)3 the functional

Ff,λ(µ) := ‖f −Aµ‖2L2(Q,ρ) + λ‖µ‖TV (1.4)

for some suitable value of the regularization parameter λ > 0. That is, we consider:

Extremal Problem 2. Given f ∈ L2(Q) and λ > 0, find µλ ∈M(S)3 such that

Ff,λ(µλ) = inf
µ∈M(S)3

Ff,λ(µ). (1.5)

When Q and S are positively separated, the existence of at least one minimizer in (1.5) is a consequence of
the weak-∗ compactness of the unit ball in M(S)3 see e.g. Proposition 3.6 of [10]. Solving Extremal Problem
2 is a particular regularization scheme for the Inverse Magnetization Problem, namely one that penalizes the
total variation of the unknown.
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It is standard that if f = Aµ0 and λn → 0, then any subsequence of µλn has a subsequence converging
weak-∗ to a solution of Extremal Problem 1. To account for measurement noise, one usually replaces f by
fn = Aµ0 + en, and then the same result holds for a sequence µn minimizing (1.4) with f = fn and λ = λn,

provided that both λn and ‖enλ−1/2
n ‖L2(Q,ρ) tend to 0, see Theorems 2&5 of [11] or Theorems 3.5&4.4 of [21].

In particular, if there is a unique solution µ0 of Extremal Problem 1, then we get weak-∗ convergence of µn
to µ0. A stronger result, involving narrow convergence of the total variation measure |µn|, can be found in
Theorem 4.3 of [7]. This strengthening is important, for it implies that “no mass is lost” as could be the case
with weak-∗ convergence, namely ‖µn‖TV tends to ‖µ0‖TV . To recap, we have a consistency property asserting
that a magnetization meeting a certain assumptions (e.g. either (a), (b) or (c) above) can be approximately
recovered via the regularization scheme (1.5), when the noise is small and the regularization parameter λ is
chosen small but still larger than the square of the noise (the so-called Morozov discrepancy principle). Note
that (1.5) might a priori have several minimizers, for the objective function (1.4) is not strictly convex, as is
easy to see.

In Section 3, we sharpen the analysis of [7] regarding Extremal Problems 1 and 2 in the case where S is
contained in a plane. We prove that µ = µ0 is the unique solution to Extremal Problem 1 in case (c) listed
above (Thm. 3.3), and also that Extremal Problem 2 has a unique solution for any data (Thm. 3.8). Both results
depend on Theorem 2.8, asserting that a two-dimensional divergence-free measure ν can be decomposed into
loops; i.e., contour integrations along rectifiable Jordan curves such that dν/d|ν|(x) is, for |ν|-a.e. x, the unit
tangent to any of these curves through x. This theorem is stated in Section 2.3, after some measure-theoretic
preparation in Sections 2.1 and 2.2.

1.2. Notation

We conclude this section with some notation and definitions regarding measures and distributions. For a
vector x in the Euclidean space Rn (we mainly deal with n = 2 or 3), we denote the j-th component of x by
xj and the partial derivative with respect to xj by ∂xj . By default, we consider vectors as column vectors; e.g.,
for x ∈ R3 we write x = (x1, x2, x3)T where “T” denotes “transpose”. We write N for the nonnegative integers,
N∗ for the positive integers, and R+ for the nonnegative real numbers. We use bold symbols to represent
vector-valued functions and measures, and the corresponding nonbold symbols with subscripts to denote the
respective components; e.g., µ = (µ1, µ2, µ3)T or b(µ) = (b1(µ), b2(µ), b3(µ))T . For x ∈ Rn and R > 0, we let
B(x,R) indicate the open ball centered at x with radius R, and S(x,R) the boundary sphere. This notation
does not show dependence on n, but no confusion will arise. We denote by M(E) the space of finite signed
Borel measures on E ⊂ Rn.

We write χE for the characteristic function of a set E and δx for the Dirac delta measure at x. Given a
Rm-valued measure in µ ∈ M(Rn)m and a Borel set E ⊂ Rn, we denote by µbE the measure obtained by
restricting µ to E (i.e., for every Borel set B ⊂ Rn, µbE(B) := µ(E ∩B)).

For µ ∈M(Rn)m, the total variation measure |µ| is defined on Borel sets B ⊂ Rn by

|µ|(B) := sup
P

∑
P∈P
|µ(P )|, (1.6)

where the supremum is taken over all finite Borel partitions P of B. The total variation norm of µ is then
defined as

‖µ‖TV := |µ|(Rn). (1.7)

The support of µ is the complement of the largest open set U such that |µ|(U) = 0; it is denoted by suppµ. A
carrier for µ is any |µ|-measurable set E with full |µ|-measure; we also say that µ is carried by E. Since |µ| is
a Radon measure, the Radon-Nikodym derivative uµ := dµ/d|µ| exists as a Rm-valued |µ|-integrable function
and it satisfies |uµ| = 1 a.e. with respect to |µ|.
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For Ω ⊂ Rn an open set, we denote by Cc(Ω,Rm) the space of Rm-valued continuous functions with compact
support on Ω, equiped with the sup-norm. When m = 1, we drop the dependence on m and simply write Cc(Ω).
A similar notational simplification is used for other functional spaces introduced below.

We shall identify µ ∈M(Rn)m with the linear form on Cc(Rn,Rm) given by

〈µ, f〉 :=

∫
f · dµ, f ∈ Cc(Rn,Rm). (1.8)

The norm of the functional (1.8), is ‖µ‖TV . More generally, for Ω ⊂ Rn an open set, it follows from Lusin’s
theorem ([26], Cor. to Thm. 2.23), applied to the restriction of uµ to “large” compact sets in Ω, and from the
dominated convergence theorem that

|µ|(Ω) = sup{〈µ,ϕ〉, ϕ ∈ Cc(Ω,Rm), |ϕ| ≤ 1}. (1.9)

The functional (1.8) extends naturally with the same norm to the Banach space C0(Rn,Rm) of Rm-valued
continuous functions on Rn vanishing at infinity.

At places, we also identify µ with the restriction of (1.8) to C∞c (Rn,Rm), the space of C∞-smooth functions
with compact support, equiped with the usual topology of test functions [27]. We refer to a continuous linear
functional on C∞c (Rn,Rm) as being a distribution, and put ∂xi to mean distributional derivative with respect
to the variable xi.

We denote Lebesgue measure on Rn by Ln and d-dimensional Hausdorff measure by Hd, see [15] for the
definitions. We normalize Hd for d = 1 and 2 so that it coincides with arclength and surface area for smooth
curves and surfaces, and more generally that it agrees with d-dimensional volume for nice d-dimensional subsets
of Rn. We denote the Hausdorff dimension of a set E by dimH(E). Recall that E ⊂ Rn is m-rectifiable if it
is the countable union of images of Lipschitz functions from Rm to Rn, up to a set of Hm-measure zero, see
Definition 15.3 of [25].

For E ⊂ Rn a measurable set and 1 ≤ p ≤ ∞, we write Lp(E) for the familiar Lebesgue space of (equivalence
classes of Ln-a.e. coinciding) real-valued measurable functions on E whose p-th power is integrable, with norm
‖g‖Lp(E) = (

∫
E
|g|pdLn)1/p (ess. supE |g| if p =∞). If E is open, we set L1

loc(E) to consist of functions f whose
restriction f|K to K lies in L1(K), for every compact K ⊂ E. For ν ∈M(Rn) a positive measure different from
Ln, we put L1[dν] for the space of real-valued integrable functions against ν.

We are particularly concerned with magnetizations supported on R2 × {0} ⊂ R3 and hence, with a slight
abuse of notation, given S ⊂ R2 and µ ∈ M(S × {0})3, we shall identify S with S × {0} ⊂ R3 and µ with
µb(R2 × {0}). In addition, we let R denote the rotation by π/2 in R2; i.e., R((x1, x2)T ) = (−x2, x1)T .

For an open set Ω ⊂ Rn, recall the space BV (Ω) of functions of bounded variation comprised of functions
in L1(Ω) whose distributional derivatives are signed measures on Ω (see, [31]). We let BVloc(Ω) denote the
space of functions whose restriction to any relatively compact open subset Ω1 of Ω lies in BV (Ω1). We define
the space ˙BV (Ω) of “homogeneous” BV-functions to consist of locally integrable functions whose distributional
derivatives are finite signed measures on Ω. Note that φ ∈ ˙BV (Ω) if and only if it is a distribution on Ω such
that ∇φ ∈M(Ω)n, by Theorem 6.7.7 of [14].

2. Measure theoretical background

2.1. Curves and divergence-free measures in Rn

For a < b two real numbers, we call a Lipschitz mapping γ : [a, b]→ Rn a parametrized rectifiable curve, while
the image Γ := γ([a, b]) is simply termed a (non-parametrized) rectifiable curve. By Rademacher’s Theorem (see
[15]), γ is differentiable a.e. on [a, b]. Note that γ needs not be injective; i.e., the curve needs not be simple. If
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we let N(γ, x) be the cardinality (finite or infinite) of the preimage γ−1(x), then the length `(γ) of γ is

`(γ) :=

∫ b

a

|γ′(t)|dt =

∫
N(γ, x) dH1(x),

where the second equality follows from the area formula ([18], 3.2.3). In particular, H1(Γ) <∞ and H1-almost
every x ∈ Γ is attained only finitely many times by γ. Observe that `(γ) 6= H1(Γ) in general. When |γ′(t)| = 1
a.e. on [a, b], we call γ a unit speed parametrization. This means that γ parametrizes Γ (non injectively perhaps)
by percursed arclength.

If γ is injective on [a, b) and γ(a) = γ(b), we say that γ is a parametrized rectifiable Jordan curve and Γ
a rectifiable Jordan curve; in this case `(γ) = H1(Γ). Given a Jordan curve Υ (i.e., the image of a circle by
an injective continuous map) such that H1(Υ) < ∞, one can easily construct a unit speed parametrization
γ : [0,H1(Υ)]→ Υ which is injective on [0,H1(Υ)) with γ(0) = γ(H1(Υ)). Thus, a Jordan curve Υ is rectifiable
if and only if H1(Υ) <∞.

For γ : [a, b]→ Rn a parametrized rectifiable curve, we define Rγ ∈M(Rn)n by

〈Rγ ,g〉 :=

∫ b

a

g(γ(t)) · γ′(t)dt =

∫
Γ

 ∑
t∈γ−1(x)

g(x) · γ′(t)

 dH1(x), g ∈ C0(Rn,Rn), (2.1)

where the second equality follows from the area formula. Clearly, Rγ is supported on Γ and ‖Rγ‖TV ≤ `(γ).

If we define ψ : [a, b] → [0, `(γ)] by ψ(t) =
∫ t
a
|γ′(τ)|dτ , then ψ is Lipschitz with ψ′(t) = |γ′(t)| a.e. and there

is a unit speed parametrization γ̃ : [0, `(γ)] → Γ such that γ = γ̃ ◦ ψ, by the chain rule and Sard’s theorem
for Lipschitz functions (see [25], Thm. 7.4). Moreover, we see from the area formula that Rγ = Rγ̃ , so we
assume unless otherwise stated that parametrized rectifiable curves are unit speed parametrizations. When g is
a gradient, say g = ∇f for some f ∈ C∞c (Rn), then 〈Rγ ,g〉 = f(b)− f(a). Hence, Rγ is divergence-free if and
only if γ is a closed curve.

One can check from (2.1) that Rγ is absolutely continuous with respect to H1bΓ and has Radon-Nykodim
derivative dRγ/d(H1bΓ)(x) =

∑
t∈γ−1(x) γ

′(t) at H1-a.e. x ∈ Γ, see Lemma A.1 of [6]. In particular, if γ is a

parametrized rectifiable Jordan curve then Rγ is absolutely continuous with respect to H1bΓ, with γ′ ◦ γ−1 as
Radon-Nikodym derivative.

It may happen that ‖Rγ‖TV < `(γ), because cancellation can occur in (2.1). For ` > 0, let C` denote those
Rγ such that ‖Rγ‖TV = `(γ) = `. Then, Rγ ∈ C` if and only if Γ has a well defined (oriented) unit tangent
τ (x) at H1-a.e. x, given by γ′(t) for any t such that γ(t) = x, see Lemma A.2 of [6]. In particular, if γ is a
parametrized rectifiable Jordan curve of length ` then Rγ ∈ C`.

It is shown in Theorem A of [28] that every µ ∈ M(Rn)n which is divergence-free is a superposition of
members of C`, for fixed but arbitrary ` > 0. This means there is a finite positive Borel measure ρ on the closed
ball B` ⊂M(Rn)n centered at 0 of radius `, which is carried by C` and such that, for ρ-a.e. γ, the measure Rγ

is supported in suppµ and

〈µ,g〉 =

∫
C`
〈Rγ ,g〉dρ(Rγ), 〈|µ|, ϕ〉 =

∫
C`
〈|Rγ |, ϕ〉dρ(Rγ), (2.2)

for all g ∈ C∞c (Rn,Rn) and ϕ ∈ C∞c (Rn). Here, M(Rn)n is endowed with the weak-∗ topology that makes it a
compact metrizable space, since its dual Cc(Rn,Rn) is separable. Of course, by mollification, (2.2) holds more
generally for g ∈ Cc(Rn,Rn) and ϕ ∈ Cc(Rn).

Decomposition (2.2) is highly non-unique (for one thing, ` > 0 is arbitrary), and the Rγ need not be
divergence-free even though µ is. Another decomposition of µ as a superposition of so-called elementary solenoids
is given in Theorem B of [28]; elementary solenoids are divergence-free, but their structure is more complex
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than the one of Rγ . As asserted by Theorem 2.8 to come, a special situation prevails in the planar case n = 2.
Namely, if we let J ⊂M(R2)2 be the set of normalized loops of the form `(γ)−1Rγ where γ : [a, b)→ R2 is a
Jordan curve, each divergence-free µ ∈M(R2)2 is a superposition of members of J. This yields a decomposition
of µ into elementary solenoids which are loops.

Let us now recall a characterization of silent magnetizations with planar support. Since such a support is
slender, the following lemma is a special case of Theorem 2.2 in [7].

Lemma 2.1. Let S ⊂ R2×{0} be closed and ν ∈M(S)3. Then ν is S-silent if and only if it is divergence-free;
i.e., ∇·ν = 0 in the distributional sense on R3.

The next elementary lemma, essentially contained in [5], characterizes the componentwise structure of silent
planar magnetizations. We include a proof for the convenience of the reader. Recall the definition of ˙BV and
the notation R for the rotation by π/2 in R2.

Lemma 2.2. Let S ⊂ R2 × {0} be closed, µ = (µ1, µ2, µ3)T ∈ M(S)3, and µT = (µ1, µ2)T . The following are
equivalent:

1. ∇·µ = 0 in the distributional sense on R3.
2. µ3 = 0 and ∇·µT = 0 in the distributional sense on R2.
3. µ3 = 0 and µT = R∇φ = (−∂x2φ, ∂x1φ)T for some φ ∈ ˙BV (R2).

Proof. Since µ has support contained in R2×{0}, it can be written in tensor product form as µ = (µbR2)⊗δx3=0

and thus ∇·µ = (∇·µT ) ⊗ δx3=0 + µ3 ⊗ δ′x3=0, where δx3=0 is the Dirac mass at zero on R in the variable x3

and δ′x3=0 its distributional derivative. Hence, (b) implies that ∇·µ = 0 and therefore (b)Rightarrow(a). Next,
for any φ ∈ C∞c (R3), let φ0, φ1 ∈ C∞c (R2) be given by φ0(x1, x2) = φ(x1, x2, 0) and φ1(x1, x2) = ∂x3

φ(x1, x2, 0).
Then, it holds that

〈∇·µ, φ〉 = −〈µ1, ∂x1φ0〉 − 〈µ2, ∂x2φ0〉 − 〈µ3, φ1〉. (2.3)

Pick φ of the form φ(x1, x2, x3) = ψ(x1, x2)η(x3) where ψ ∈ C∞c (R2) and η ∈ C∞c (R). First, letting η be such
that η(0) = 1 and η′(0) = 0, we deduce from (2.3) that if ∇·µ = 0 then ∇·µT = 0. Second, letting η be such
that η(0) = 0 and η′(0) = 1, we deduce from (2.3) again that if ∇·µ = 0 then µ3 = 0, whence (a)Rightarrow(b).

Suppose now that (b) holds. Then (−µ2, µ1)T satisfies the Schwartz rule when viewed as a R2 valued
distribution on R2; i.e, ∂x2(−µ2) = ∂x1µ1. Therefore, RµT = (−µ2, µ1)T is the gradient of a scalar valued
distribution Ψ (see, [27]). Since the components of ∇Ψ are finite signed measures, Ψ ∈ BVloc ([14], Thm. 6.7.7)
so that in fact Ψ ∈ ˙BV (R2). Thus, (c) holds with φ = −Ψ and we get that (b)Rightarrow(c). In the other
direction if µT = (−∂x2

φ, ∂x1
φ)T for some distribution φ, then ∇·µT = −∂x1

∂x2
φ + ∂x2

∂x1
φ = 0 so that

(c)Rightarrow(b).

Lemma 2.2 entails that decomposing solenoids in the plane as a superposition of loops is equivalent, up to
a rotation, to decomposing gradients as a superposition of unit normal fields to a family of Jordan curves.
As proposed in [28], this can be achieved via the co-area formula for BV -functions and the decomposition of
1-dimensional integral currents as a sum of indecomposable elements ([18], 4.2.25). A specific instance of the
latter, used in the present context, is the decomposition into Jordan curves of the measure-theoretic boundary
of planar sets of finite perimeter given in [1]. We discuss the necessary material in the forthcoming section.

2.2. Sup-level sets of functions in ˙BV (Rn) and the co-area formula

For E ⊂ Rn a Borel set, the measure-theoretical boundary of E is the set ∂ME defined by

∂ME :=

{
x ∈ Rn : lim sup

ρ→0

Ln(B(x, ρ) ∩ E)

Ln(B(x, ρ))
> 0 and lim sup

ρ→0

Ln(B(x, ρ) \ E)

Ln(B(x, ρ))
> 0

}
. (2.4)
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Note that ∂ME is a subset of the topological boundary of E.
A measurable set E ⊂ Rn such that ∇χE ∈M(Rn)n is said to be of finite perimeter1. For such a set it holds

that

|∇χE | = Hn−1b∂ME, (2.5)

and ‖∇χE‖TV = Hn−1(∂ME) is called the perimeter of E. The identity (2.5) can be obtained by combining
([15], Thm. 5.15 (iii)), saying that (2.5) holds when ∂ME is replaced by the so-called reduced boundary of E,
with Lemma 5.5 of [15], asserting that ∂ME differs from the reduced boundary by a set of Hn−1-measure zero
(see also [4], Thm. 10.3.2).

It follows from (2.5) that a set of finite perimeter has a measure-theoretical boundary of finite Hn−1-measure.
In contrast, its Euclidean boundary can be much larger and even have positive Ln-measure, as the following
example shows.

Example 2.3. Let E1 = B(0, 1) ⊂ R2 and {qj}j∈N enumerate all points in E1 with rational coordinates. Having
defined inductively a closed set En for n ≥ 1, let jn be the smallest integer such that qjn lies interior to En
and Bn the largest open ball centered at qjn contained in En, with radius rn ≤ 2−n ( at some steps Bn could
be empty). Then, define En+1 = En \Bn which must be a closed set with nonempty interior, otherwise a finite
union of balls of total L2-measure less than π/3 would cover B(0, 1). Hence, the process can continue indefinitely,
and we let E =

⋂
En which is a closed set.

Clearly E has no interior, for all the qj have been excised out in the process; therefore its Euclidean boundary
is E itself. Moreover, L2(E) ≥ π − π

∑∞
n=1 r

2
n ≥ π(1−

∑∞
n=1 4−n) > 0.

Now, by the standard Green formula, each En is of finite perimeter, because it is a finitely connected set with
piecewise smooth boundary. Thus, {χEn} is a nonincreasing sequence of BV -functions and their point-wise limit
χE is integrable. Also, by (2.5), it holds that ‖∇χEn‖TV ≤ 2π

∑∞
n=0 rn ≤ 4π, therefore we can use ([31], Rem.

5.2.2) to the effect that χE ∈ BV (R2); i.e. E is a set of finite perimeter with Euclidean boundary of positive
L2-measure, as announced.

For any E ⊂ Rn of finite perimeter, one defines the generalized unit inner normal νE to ∂ME as the Radon-
Nikodym derivative u∇χE which is but d∇χE/d(Hn−1b∂ME), by (2.5). Then, the Radon Nikodym Theorem
entails the following version of the Gauss-Green formula:
if E ⊂ Rn is a set of finite perimeter, then for each Borel set B ⊂ Rn it holds that

∇χE(B) =

∫
B

νE d
(
Hn−1b∂ME

)
. (2.6)

The connection with the classical Gauss-Green formula is more transparent on the distributional version of
(2.6), namely: ∫

χE ∇ ·ϕ dLn = −
∫
ϕ · νE d

(
Hn−1b∂ME

)
, ϕ ∈ C1

c (Rn,Rn). (2.7)

The identity (2.7) was proven in [12, 13, 16, 17]; see also Theorem 5.16 of [15] and Theorem 10.3.2 of [4]. Note
that if E has finite perimeter, then so does Rn \ E and νRn\E = −νE .

Remark 2.4. When n = 2, we see from (2.7) that νE coincides with the usual, differential-geometric inner
unit normal to the boundary of E when the latter is the interior of a rectifiable Jordan curve, for in this case
the Gauss-Green formula is valid for both definitions of the normal (see ([3], Thm. 10–43) for a suitable version
of the Gauss-Green formula). Actually, the measure-theoretical boundary of a planar set of finite perimeter is

1In [4, 15, 31], the definition is that χE ∈ BV (Rn). The present definition means that χE ∈ ˙BV (Rn) and, in view of Theorem 3.47
in [2], amounts to requiring that either χE or χRn\E lies in BV (Rn).
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comprised of a countable union of rectifiable Jordan curves, up to a set of H1-measure zero ([1], Cor. 1). Thus,
both notions of inner unit normal coincide H1-a.e. on the measure-theoretical boundary of such a set.

Given a function φ ∈ L1
loc(Rn), we consistently denote with Et the suplevel sets:

Et := {x ∈ Rn | φ(x) > t}. (2.8)

Of course, the set Et, as well as a number of subsequent sets in Rn that we will consider, is defined up to a set
of Ln-measure zero only, but which representative is chosen will be irrelevant for our purposes. Hereafter, we
abbreviate the sentence “up to a set of Ln-measure zero” by “mod-Ln”, and similarly for Hn−1.

The sup-level sets are instrumental in the co-area (or Fleming-Rishel) formula for ˙BV -functions, of which we
record a version in Lemma 2.5 below; see, e.g. Theorem 3.40 of [2].

Lemma 2.5. Suppose φ ∈ ˙BV (Rn) and let Et be as in (2.8). Then, Et has finite perimeter for a.e. t ∈ R and
for any Borel set B ⊂ Rn, g ∈ L1[d|∇φ|]n and h ∈ L1[d|∇φ|], it holds that

1. |∇φ|(B) =

∫ ∞
−∞
|∇χEt |(B) dt =

∫ ∞
−∞
Hn−1(∂MEt ∩B) dt,

2.

∫
hd(|∇φ|) =

∫ ∞
−∞

∫
hd(|∇χEt |) dt =

∫ ∞
−∞

∫
hd
(
Hn−1b∂MEt

)
dt,

3. ∇φ(B) =

∫ ∞
−∞
∇χEt(B) dt =

∫ ∞
−∞

∫
B

νEt d
(
Hn−1b∂MEt

)
dt,

4.

∫
g · d(∇φ) =

∫ ∞
−∞

∫
g · d(∇χEt) dt =

∫ ∞
−∞

∫
g · νEt d

(
Hn−1b∂MEt

)
dt,

where in (b) the function h lies in both L1[d|∇χEt |] and L1[dHn−1b∂MEt] for a.e. t and in (d) the functions g
and g · νEt lie in L1[d|∇χEt |]n and L1[dHn−1b∂MEt], respectively, for a.e. t.

In fact, that Et has finite perimeter for a.e. t and that (a) and (c) hold follows from Theorem 3.40 of [2]
and (2.6). Then, (a) and (c) respectively yield (b) and (d) for simple functions, and the general case follows by
dominated convergence, using (a) to ascertain that a Borel set B such that |∇φ|(B) = 0 has |∇χEt |(B) = 0 and
Hn−1b∂MEt(B) = 0 for a.e. t.

One can also describe the “measure theoretical discontinuities” of ˙BV -functions as follows. For Ω ⊂ Rn an
open set and a Ln-measurable f : Ω→ R, define for x ∈ Rn (see [15], Def. 5.8, 5.9):

f sup(x) := ap lim sup
y→x

f(y) = inf

{
t

∣∣∣∣ limr→0

Ln(B(x, r) ∩ {φ > t})
Ln(B(x, r))

= 0

}
,

f inf(x) := ap lim inf
y→x

f(y) = sup

{
t

∣∣∣∣ limr→0

Ln(B(x, r) ∩ {φ < t})
Ln(B(x, r))

= 0

}
(2.9)

and J(f) :=
{
x
∣∣f inf(x) < f sup(x)

}
.

Lemma 2.6. Given φ ∈ ˙BV (Rn), the set J(φ) is (n− 1)-rectifiable. Furthermore, ∇φbJ(φ) is absolutely con-
tinuous with respect to Hn−1 and, with Et as in (2.8), its Radon-Nykodim derivative satisfies for a.e. t ∈ R and
Hn−1-a.e. x ∈ ∂MEt ∩ J : d∇φ/dHn−1 = (φsup − φinf)νEt .

Proof. Clearly, it is enough that the result holds for the restriction φ|B of φ to a bounded open ball B ⊂ Rn,
with Et replaced by Et ∩B and J(φ) by J(φ)∩B. Since φ|B ∈ BV (B), the conclusion now follows from Remark
10.3.4, Theorem 10.4.1 of [4], see also Theorem 3.78 of [2].
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2.3. Loop decomposition of divergence-free planar measures

Let us make one more piece of notation: for Γ ⊂ R2 a Jordan curve, we denote by int(Γ) the bounded
connected component of R2 \Γ and by by ext(Γ) its bounded connected component. We record for later use the
following “obvious” lemma.

Lemma 2.7. If Γ ⊂ R2 is a rectifiable Jordan curve, then ∂M (int(Γ)) = ∂M (ext(Γ)) = Γ up to a set of H1-
measure zero.

Proof. Clearly ∂M (int(Γ)) = ∂M (ext(Γ)) ⊂ Γ. By Proposition 2 & Theorem 7 of [1], ∂M (int(Γ)) is a rectifiable
Jordan curve Γ̃, up to a set of H1-measure zero. Thus, H1(Γ̃ \ Γ) = 0 whence Γ̃ ∩ Γ is dense in Γ̃, and so Γ̃ ⊂ Γ
by compactness of Γ. Therefore, by the Jordan curve theorem, Γ̃ = Γ.

We regard a parametrized Jordan curve γ as the member Rγ ofM(R2)2 defined in (2.1). Here, a degenerate
curve has constant parametrization and therefore corresponds to the zero measure. We endow parametrized
Jordan curves with the weak-∗ topology inherited from R2-valued measures.

Let C denote the space of sequences {γn}n∈N of parametrized Jordan curves in R2 whose lengths are
summable:

∑
n∈N `(γn) <∞. We let Ċ indicate the set of equivalence classes under permutation of the terms in

the sequence. Recalling that M(R2)2 equipped with the weak-∗ topology is a metric space, say with distance
dw, we endow C with the distance dC((γn), (γ′n)) := supn dw(Rγn ,Rγ′n

) and Ċ with the quotient topology.
Recall that a map ψ : R→ E , with E a topological space, is approximately continuous at t0 ∈ R if, for every

neighborhood V ⊂ E of ψ(t0), it holds that

lim
r→0

L1 ({t : |t− t0| < r, ψ(t) /∈ V })
r

= 0. (2.10)

We can now state a representation theorem for divergence-free measures in the plane as a superposition of
loops. This is Theorem 2.8 below, in which we point out that the second assertion of item (iii) is not proven.
Indeed, the argument is somewhat heavy and the corresponding assertion will not be used later on. A full proof
can be found in Theorem 4.5 of [6], see discussion after Theorem 2.8.

Theorem 2.8. Let ν ∈M(S)2. Then ν is divergence-free in R2 if and only if there exists G ⊂ R with L1(R \
G) = 0 such that, for each t ∈ G, there is a countable collection of (possibly degenerate) parametrized rectifiable
Jordan curves {γtn}n∈N with images Γtn such that:

(i) the {Γtn}n∈N are disjoint up to a set of H1-measure zero and Γtn ⊂ suppν for each n;
(ii) the union

⋃
n Γtn is, up to a set of H1-measure zero, the measure-theoretical boundary ∂MΩ(t) of a set

Ω(t) ⊂ R2 of finite perimeter;
(iii) Ω(t1) ⊃ Ω(t2) if t1 < t2, and the mapping t 7→ {γtn}n∈N from R to Ċ is approximately continuous at a.e.

t;
(iv) For any Borel set B ⊂ R2, g ∈ L1[d|ν|]2 and h ∈ L1[d|ν|], it holds that

ν(B) =

∫
R

∑
n∈N

(∫
B

τ tn d
(
H1bΓtn

))
dt, (2.11)

where τ tn = (γtn)′/|(γtn)′| is the unit tangent vector field to Γtn oriented by γtn,

|ν|(B) =

∫
R
H1(∂MΩ(t) ∩B)dt =

∫
R

(∑
n∈N
H1(Γtn ∩B)

)
dt, (2.12)
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g · dν =

∫
R

∑
n∈N

(∫
g · τ tn d

(
H1bΓtn

))
dt, (2.13)

and ∫
hd|ν| =

∫
R

∑
n∈N

(∫
hd
(
H1bΓtn

))
dt, (2.14)

where the inner integrals on the right handsides of (2.13) and (2.14) are well defined for a.e. t ∈ R.
(v) The set J :=

⋃
t1 6=t2∈G
n1,n2∈N

Γt1n1
∩Γt2n2

is 1-rectifiable in R2 and νbJ is absolutely continuous with respect to H1;

for a.e. t ∈ G, uν(x) = τ tn(x) for H1-a.e. x ∈ J ∩ ∂MΩ(t). More generally, it holds for a.e. t ∈ G and
every n ∈ N that uν(x) = τ tn(x) for H1-a.e. x ∈ Γtn.

Proof. Any ν of the form (2.11) is divergence-free (see [28] or discussion following (2.1)).
Now suppose ν is divergence-free. By Lemma 2.2, we have ν(B) = R∇φ(B) for some φ ∈ ˙BV (R2). Defining

Et as in (2.8), we get from Lemma 2.5 that it has finite perimeter for a.e. t. Let G be the set of such t, and for
t ∈ G write {γtn}n∈N for the family of parametrized Jordan curves constitutive of ∂MEt ([1], Cor. 1), augmented
by infinitely many degenerate curves reducing to a point in case this family is finite. Here, we orient γtn so that
τ tn = RνEt at H1-a.e. point of γtn. The ordering n 7→ γtn is arbitrary, but when taking the equivalence class in Ċ
of {γtn}n∈N ∈ C, this ordering becomes immaterial. Now, if we set Ω(t) = Et, then (ii) and the first assertion in
(i) come from Corollary 1 of [1] and the first assertion in (iii) is obvious; as pointed out before the theorem, we
refer the reader to Theorem 4.5 of [6] for the proof of the second assertion on approximate continuity. Recalling
definition (2.2), we see that Lemma 2.5 and the remark after (2.7) together imply (iv), where it should be noted
that equations (2.11) through (2.14) only depend on the equivalence class of {γtn}n∈N in Ċ. Since (2.12) implies
that H1(Γn(t) \ suppν) = 0 for a.e. t ∈ R the second half of (i) holds.

Observing that
⋃
n∈N Γtn = ∂MEt mod-H1, we see for each t ∈ G that every x ∈ J lies in ∂M (R2 \Et1)∩∂MEt2

for some t1 < t2. Remembering the definitions in (2.9), this implies that, for every x ∈ J , φinf(x) ≤ t1 < t2 ≤
φsup(x). Hence, by Lemma 2.6, J ⊂ J(φ) and the first two assertions of (v) follow. Now, evaluating ‖ν‖ with
(2.12) and integrating (2.13) against uν we get,

∫
R

(∑
n∈N
H1(Γtn)

)
dt = ‖ν‖ =

∫
uν · dν =

∫
R

∑
n∈N

(∫
uν · τ tn d

(
H1bΓtn

))
dt,

and noting that uν · τ tn ≤ 1, with equality only when uν = τ tn, gives us the last assertion of (v).

The unproven assertion in (iii) of Theorem 2.8, claiming approximate continuity of t 7→ {γtn}n∈N from R to Ċ
at a.e. t, is key to establish that ρ := dt⊗

∑
nH1(Γtn)δ`−1(γtn)Rγtn

is a Borel measure on the unit ball ofM(R2)2

which is carried by J (cf. definition after (2.2)) and satisfies µ =
∫
J∈J Jdρ(J) as well as |µ| =

∫
J∈J |J |dρ(J). This

gives a fairly concrete decomposition of a divergence-free measure as a superposition of elementary solenoids
in the planar case, and we refer the reader to Proposition 4.6 of [6] for a proof. Let us also mention that, even
though ∂MΩ(t) is approximately continuous with respect to t in the weak-∗ sense by what precedes, the Ω(t)
in Theorem 2.8 may all have different topologies, as can be seen from the following example.

Example 2.9. We will generate a BV function ϕ∞, valued in [0, 1], whose suplevel sets Et all have different
topologies. Then, ν := R∇ϕ∞ is divergence-free and Ω(t) = Et in Theorem 2.8, thereby yielding an example
with the aforementioned property.

We construct ϕ∞ as the limit of a bounded increasing sequence (φm) of BV functions. Let us first define
a family of sets of finite perimeter that we will use to construct the φm. For any two integers m and n such
that m ≥ 0 and 1 ≤ n ≤ 2m, define the set b(n,m) ⊂ R2 to be the closed ball around the point (n,m) with
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perimeter 2−2m−1 (thus, radius 2−2m−2/π) minus 2m pairwise disjoint nonempty open balls contained in this
closed ball. We pick the sum of the perimeters of this 2m open balls to be strictly less than 2−2m−1. Note that

the b(n,m) are pairwise disjoint. Define ϕ0 := 1
2χb(1,0) and, for m > 0, ϕm := ϕm−1 +

∑2m

k=1
2k−1
2m+1χb(k,m). Then

‖∇ϕ0‖TV < 1/2, moreover for m > 0:

‖∇ϕm‖TV = ‖∇ϕm−1‖TV +

2m∑
k=1

2k − 1

2m+1
‖∇χb(k,m)‖TV

< ‖∇ϕm−1‖TV +

2m∑
k=1

2k − 1

2m+1
(2−2m−1 + 2−2m−1)

= ‖∇ϕm−1‖TV +
22m

23m+1
,

and hence, ‖∇ϕm‖TV < 1 for every m. Thus, ϕ∞, the pointwise limit of the nondecreasing sequence of functions
{ϕm}m, is a BV function (see [31], Thm. 5.2.1).

Now, for m, n, p and q some integers such that 1 ≤ n ≤ 2m and 1 ≤ p ≤ 2q, it is clear that b(n,m) is
topologically equivalent to b(p, q) if and only if q = m. Hence, with the notation of Theorem 2.8, we see that
given s, t ∈ (0, 1), the sets Ω(t) and Ω(s) can be topologically equivalent only if they contain, for each fixed m,
the same number of sets from the family {b(n,m)}2mn=1. However if s < t then there exist two positive integers
m and n such that s < 2n−1

2m+1 < t, thus b(n,m) ⊂ Ω(s) \ Ω(t) and therefore Ω(t) is not topologically equivalent
to Ω(s).

3. Applications to inverse magnetization problems

3.1. Solutions to Extremal Problem 1

For µ,ν ∈ M(R3) with fµ to denote the Radon-Nikodym derivative of µ with respect to |ν|, we define for
|ν|-a.e. x:

wν
µ(x) :=

{
fµ(x)
|fµ(x)| , fµ(x) 6= 0,

uν(x), fµ(x) = 0.
(3.1)

We put E = f−1
µ (0) and observe that∫

wν
µ · dν =

∫
Ec

wν
µ · uν d|ν|+ |ν|(E). (3.2)

The next lemma provides a variational characterization of solutions to Extremal Problem 1.

Lemma 3.1. Let S ⊂ R3 be closed and suppose µ,ν ∈M(S)3, with wν
µ and E as above. Then

‖µ‖TV ≤ ‖µ+ tν‖TV , for every t > 0, (3.3)

if and only if ∫
wν

µ · dν ≥ 0. (3.4)

Hence, ‖µ‖TV = MS(µ) if and only if (3.4) holds for every S-silent ν ∈ M(S)3. The inequality (3.3) is strict
for every t > 0 if the inequality (3.4) is strict.



14 L. BARATCHART ET AL.

Proof. Let µs denote the singular part of µ with respect to |ν|. Then, for ε > 0,

‖µ+ εν‖TV =

∫
|fµ + εuν |d|ν|+ ‖µs‖TV

=

∫
Ec
|fµ + εuν |d|ν|+ ε|ν|(E) + ‖µs‖TV

= ‖µ‖TV + ε

(∫
Ec

wν
µ · uν d|ν|+ |ν|(E)

)
+ o(ε)

= ‖µ‖TV + ε

∫
wν

µ · dν + o(ε),

(3.5)

where the above used that for a,b ∈ R3, a 6= 0 and |b| = 1 (with a = fµ and b = uν),

|a + εb| = |a|
(

1 + 2ε
a · b
|a|2

+ ε2
|b|2

|a|2

)1/2

= |a|+ ε
a

|a|
· b +

1

|a|
O(ε2),

together with |ν|({x : 0 < |fµ (x)| < ε}) = o(1) as ε → 0. Using the convexity of the TV-norm we have for
0 < ε ≤ 1 and t > 0:

‖µ+ tεν‖TV = ‖(1− ε)µ+ ε(µ+ tν)‖TV ≤ (1− ε)‖µ‖TV + ε‖µ+ tν‖TV ,

which implies

t
‖µ+ εtν‖TV − ‖µ‖TV

tε
≤ ‖µ+ tν‖TV − ‖µ‖TV . (3.6)

If (3.4) holds, then it follows in view of (3.5) (with tε instead of ε) that the limit of the left-hand side of (3.6)
is nonnegative when ε → 0+, which implies (3.3). Conversely, if (3.3) holds then the left hand side of (3.6) is
nonnegative and using (3.5) we can take the limit as ε→ 0+ to obtain (3.4). That the inequality (3.3) is strict
for every t > 0 when the inequality (3.4) is strict follows immediately from the above computations.

We say that µ ∈ M(S)3 is carried by a set if that set has full |µ|-measure; i.e., the complement has |µ|-
measure zero. Recall that a set B ⊂ Rn is purely 1-unrectifiable if H1(E ∩B) = 0 for every 1-rectifiable set E.
Clearly a set of H1-measure zero is purely 1-unrectifiable.

Theorem 3.2. Let S ⊂ R3 be slender and closed and suppose µ̃ ∈M(S)3 is carried by a purely 1-unrectifiable
set. Then µ̃ is strictly TV -minimal. Moreover, if µ ∈M(S)3 is TV -minimal on S, then so is µ+ µ̃.

Proof. Since S is slender, any S-silent magnetization ν is divergence-free. From the decomposition (2.11), we
then have that ν and µ̃ are mutually singular since the latter is carried by a purely 1-unrectifiable set, showing
that µ̃ is strictly TV -minimal.

Next suppose µ ∈M(S)3 satisfies ‖µ‖TV = MS(µ) and ν ∈M(S)3 be S-silent. Since ν and µ̃ are mutually
singular, dµ̃/d|ν| = 0 and thus, recalling definition (3.1), we see that wν

µ = wν
µ+µ̃, |ν|-a.e. Lemma 3.1 then

implies ‖µ+ µ̃‖TV = MS(µ+ µ̃).

The first assertion of Theorem 3.2 sharpens Theorem 2.6 of [7] stating that a magnetization supported on a
purely 1-unrectifiable set is strictly TV -minimal. In the case that S is planar, this result can be strengthened
by the following theorem.
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Theorem 3.3. Let S ⊂ R2 × {0} be closed and suppose µ is a magnetization carried by a Borel set Z ⊂ S that
satisfies

H1(Γ ∩ Z) ≤ H1(Γ \ Z), (3.7)

for any rectifiable Jordan curve Γ ⊂ S. Then µ is TV -minimal on S.
Let ν ∈ M(S)3 be S-silent whence ν = (νT , 0) where νT is divergence free, by Lemmas 2.1 and 2.2, and

denote by Γtn the loop decomposition of νT from Theorem 2.8. If ‖µ + ν‖TV = ‖µ‖TV , then for almost every
t equality holds in (3.7) whenever we substitute Γ with Γtn and every n ∈ N. In particular, µ is strictly TV -
minimal on S if the inequality (3.7) is strict for every nondegenerate Γ ⊂ S, and then µ + µ̃ is also strictly
TV -minimal when µ̃ is carried by a purely 1-unrectifiable set.

Proof. Let ν be an S-silent magnetization with fµ, wν
µ as in (3.1), and recall E = f−1

µ (0). Also let µs denote the
singular part of µ with respect to |ν|. For t ∈ R and n ∈ N, let τ tn be as in Theorem 2.8 where ν gets replaced
by νT .

By assertion (v) of Theorem 2.8, we know for a.e. t ∈ R and for every n ∈ N that uν(x) = (τ tn(x), 0) for
H1-a.e. x ∈ Γtn. Note also that by (iv) of Theorem 2.8, wν

µ · (τ tn, 0) is H1-integrable on Γtn for every n ∈ N and
a.e. t ∈ R. Now, for every such t,∫

Γtn

wν
µ · (τ tn, 0) dH1 =

∫
Γtn∩Ec

wν
µ · (τ tn, 0) dH1 +

∫
Γtn∩E

uν · (τ tn, 0) dH1

=

∫
Γtn∩Ec

wν
µ · (τ tn, 0) dH1 +H1(Γtn ∩ E)

≥ −H1(Γtn ∩ Ec) +H1(Γtn ∩ E).

(3.8)

From (2.14) we have

0 =

∫
Zc
|fµ|d|ν| =

∫
R

∑
n∈N

(∫
Zc
|fµ|d

(
H1bΓtn

))
dt.

Observing that |fµ(x)| > 0 for x ∈ Ec, the above equation implies that the L1-measure of

T0 := {t ∈ R | ∃n ∈ N : H1(Γtn ∩ Ec ∩ Zc) 6= 0}

is zero; that is, H1(Γtn ∩ Ec ∩ Zc) = 0 for a.e. t. Thus, by (3.8) we get that∫
Γtn

wν
µ · (τ tn, 0) dH1 ≥ −H1(Γtn ∩ Z) +H1(Γtn \ Z) ≥ 0, (3.9)

where the last inequality follows from the condition (3.7). Therefore, by (2.13),∫
R2

wν
µ · dν =

∫
R

∑
n∈Nt

(∫
R2

wν
µ · (τ tn, 0) d

(
H1bΓtn

))
dt ≥ 0, (3.10)

and, hence, Lemma 3.1 gives us ‖µ‖TV ≤ ‖µ+ν‖TV . Moreover, if there is a set of positive measure E ⊂ R such
that for every t ∈ E there exists an n for which the rightmost inequality in (3.9) is strict, then the inequality in
(3.10) is also strict. Finally, (3.7) is invariant upon adding a purely 1-unrectifiable set to Z.



16 L. BARATCHART ET AL.

Corollary 3.4. Let S ⊂ R2 × {0} be closed and suppose µ is a magnetization carried by a Borel set Z ⊂ S
that is contained in a purely 1-unrectifiable set plus a countable union

⋃
k∈K Lk where the Lk are disjoint line

segments such that the distance from any Lk to any Lj, j 6= k, is greater than or equal to the length of Lk.
Then (3.7) holds for any rectifiable Jordan curve Γ, and thus µ is TV -minimal on S. Moreover, if the distance
from any Lk to any Lj, j 6= k, is strictly greater than the length of Lk, then (3.7) is strict and µ is strictly
TV -minimal on S.

Proof. By the last assertion of Theorem 3.3, it is enough to assume Z is contained in a countable union of line
segments with the aforementioned properties. Let Γ be a rectifiable Jordan curve oriented by a parametrization
γ. Without loss of generality we may assume that Z ∩ Lk 6= ∅ for all k ∈ K. If K = {1} is a singleton, then
(since L1 is a line segment)

H1(Γ ∩ Z) ≤ H1(Γ ∩ L1) < H1(Γ \ L1) ≤ H1(Γ \ Z).

Otherwise, for each k ∈ K there is some directed sub-arc Γk ⊂ Γ with initial point in Lk, end point in some Lj
for j 6= k, and interior in the complement of

⋃
` 6=k L`. Note that for j 6= k ∈ K, the interiors of Γk and Γj are

disjoint, and that H1(Γ ∩ Lk) ≤ H1(Γk) by assumption. Also note that this inequality is strict under the final
assumption. Thus,

H1(Γ ∩ Z) ≤
∑
k∈K

H1(Γ ∩ Lk) ≤
∑
k∈K

H1(Γk) ≤ H1(Γ \ Z),

where the second inequality is strict under the last assumption.

We next characterize the space of S-silent magnetizations when S contains only a finite number of Jordan
curves. First we consider the class of closed S ⊂ R2 that contain no rectifiable Jordan curve at all, and hence,
cannot hold nontrivial silent magnetizations. We call such S tree-like. Note that any closed purely 1-unrectifiable
set is tree-like, but the converse is not true. We also note that a tree-like set may contain a Jordan curve, such
as the Koch curve, which is not rectifiable. As a consequence of Theorem 2.8 we obtain the following result.

Lemma 3.5. Let S be a closed subset of R2 × {0}. If µ ∈ M(S)3 is nonzero and S-silent, then the support
of µ contains a rectifiable Jordan curve. Hence, if S is tree-like the only S-silent magnetization is the zero
magnetization.

Proof. Since S ⊂ R2 × {0}, it is slender and hence S-silent magnetizations are divergence free. The lemma now
follows from Theorem 2.8.

For a closed set S ⊂ R2 × {0}, let Σ(S) denote the linear subspace of M(S)3 consisting of S-silent sources.
The previous lemma shows that Σ(S) is the trivial subspace when S is tree-like. Next, we present a theorem
which provides sufficient conditions for Σ(S) to be finite dimensional and generalizes the second assertion of
Lemma 3.5 when H1(S) is finite. First, we record an elementary lemma used in the proof Theorem 3.7.

Lemma 3.6. If {Γi}Ni=1 is a family of Jordan curves in R2 such that for any i, the union
⋃
j 6=i Γj does not

contain Γi, then R2 \
⋃N
i=1 Γi contains at least N + 1 connected components.

Proof. The proof will be done by induction. The case N = 1 is just the Jordan curve theorem. Assume that
R2 \

⋃N−1
i=1 Γi contains at least N connected (necessarily open) components. By connectness, any connected (also

necessarily open) component of R2 \
⋃N
i=1 Γi is contained in a connected component of R2 \

⋃N−1
i=1 Γi, conversely

any connected component of R2 \
⋃N−1
i=1 Γi must contain at least one connected component of R2 \

⋃N
i=1 Γi.

Since ΓN 6⊂
⋃N−1
i=1 Γi, there exists a connected component U of R2 \

⋃N−1
i=1 Γi such that U ∩ ΓN 6= ∅. Then,

by the Jordan curve theorem, U ∩ R2 \
⋃N
i=1 Γi is disconnected. Hence, at least two connected components



INVERSE POTENTIAL PROBLEMS IN DIVERGENCE FORM 17

of R2 \
⋃N
i=1 Γi are contained in U ; therefore, it follows that R2 \

⋃N
i=1 Γi has a larger number of connected

components than R2 \
⋃N−1
i=1 Γi which, in turn, contains at least N . This completes the proof.

Theorem 3.7. Let S ⊂ R2×{0} be closed with empty interior and such that the number n of bounded connected
components of R2 × {0} \ S is finite. Then the dimension of Σ(S) is less than or equal to n with equality if
H1(S) is finite.

Proof. Let S′ ⊂ S be any union of finitely many rectifiable Jordan curves contained in S and let m be the number
of bounded connected (necessarily open) components of R2 \ S′. For any A ⊂ R2, let C(A) denote the family of
connected components of A and let B(A) ⊂ C(A) be the bounded ones. Since (R2 \ S) ∪ (S \ S′) = (R2 \ S′),
for every C ∈ C(R2 \ S), there exists a unique f(C) ∈ C(R2 \ S′) such that C ⊂ f(C). Now, since the set
S \ S′ has empty interior, for every D ∈ B(R2 \ S′), we have that D 6⊂ (S \ S′), hence D ∩ C 6= ∅ for some
C ∈ C(R2 \ S) and thus, for any such C, C ⊂ D whence C is bounded, and f(C) = D. Let fB be the restriction
of f to B(R2 \ S). As a consequence of the above, the image of fB contains B(R2 \ S′) and therefore n ≥ m.
Lemma 3.6 now implies that there exists a family of at most n rectifiable Jordan curves whose union contains
all rectifiable Jordan curves contained in S. Therefore, we can assume that S′ is the union all rectifiable Jordan
curves contained in S. Note that S′ is closed and H1(S′) is finite.

From Theorem 2.8 it follows that Σ(S) = Σ(S′). Thus, showing that dim Σ(S′) = m will prove our theorem.
Let {Ei}mi=1 be the family of bounded connected components of R2 \ S′. Note that each Ei is of finite perimeter
since H1(S′) is finite (see for example [15], Thm. 5.23 and then Thm. 5.15). Let `i := R∇χEi for i = 1, ...m.
By Lemmas 2.1 and 2.2, each `i is S′-silent. To show that {`i}mi=1 generates Σ(S′), it is sufficient by Theorem
2.8 to prove that for any rectifiable Jordan curve Γ ⊂ S′ with parametrization γ, the magnetization Rγ defined
by (2.1) is in the span of the `i’s.

Using the Jordan curve theorem we can see that for any Ei such that int(Γ) ∩ Ei 6= ∅ we have that Ei ⊂
int(Γ). Hence there exists a J ⊂ {1, ...,m} such that

⋃
i∈J Ei ⊂ int(Γ) ⊂ S′ ∪

⋃
i∈J Ei and since L2(S′) = 0

while the Ei’s are disjoint, then

±Rγ = R∇χint(Γ) = R∇χ⋃
i∈J Ei

=
∑
i∈J

R∇χEi =
∑
i∈J

`i,

where the first equality comes from the remark after (2.7), equation (2.6) and Lemma 2.7.
To show linearly independence, assume that

∑m
i=1 ci`i = 0 where ci ∈ R, i = 1, ..,m. Since 0 =∑m

i=1 ciR∇χEi = R∇ (
∑m
i=1 ciχEi), thus

∑m
i=1 ciχEi is a constant but since the Ei’s are bounded and disjoint

then each ci = 0 and hence the `i’s are indeed linearly independent.

3.2. Regularization by penalizing the total variation

Let S ⊂ R2 × {0} and Q ⊂ R3 be closed and positively separated. For µ ∈M(S)3 and v a unit vector in R3,
the component of the magnetic field b(µ) in the direction v at x 6∈ S is given, in view of (1.1), by

bv(µ)(x) := v · b(µ)(x) = −µ0

4π

∫
Kv(x− y) · dµ(y), (3.11)

where

Kv(x) =
v

|x|3
− 3x

v · x
|x|5

= ∇
(
v · x
|x|3

)
. (3.12)
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Consider a finite, positive Borel measure ρ with support contained in Q and let A :M(S)3 → L2(Q, ρ) be the
so-called forward operator defined by

A(µ)(x) := bv(µ)(x), x ∈ Q. (3.13)

The adjoint operator A∗ is then given by (see [7], Sect. 3)

A∗(Ψ)(x) := −µ0∇(∇Uρ,ψ · v)(x), Uρ,ψ(x) = − 1

4π

∫
Ψ(y)

|x− y|
dρ(y). (3.14)

Since Q and S are positively separated it follows from the harmonicity of Kv that A∗(Ψ) ∈ C0(S)3 and
thus A∗ : (L2(Q, ρ))∗ ∼ L2(Q, ρ) → C0(S)3 ⊂ (M(S)3)∗. Note the kernel of the forward operator A contains
all S-silent magnetizations. In the case this kernel consists exactly of S-silent magnetizations, we say that A
is S-sufficient. It follows from Lemmma 2.3 of [7] and the discussion thereafter that A is S-sufficient when
S ⊂ R2 × {0} and Q ⊂ R3 are positively separated closed sets and for some complete real analytic surface
A ⊂ R3 \ S we have:

1. S and A are positively separated;
2. S lies entirely within one connected component of R3 \ A;
3. Q ∩ A has Hausdorff dimension strictly greater than 1 in each connected component of R3 \ S;
4. suppρ = Q.

For µ ∈ M(S)3, f ∈ L2(Q, ρ), and λ > 0, recall from (1.4) the definition of Ff,λ, and from (1.5) the notation
µλ ∈M(S)3 to designate a minimizer of Ff,λ. As a second application of our results in Section 2.3, we prove:

Theorem 3.8. Let S be a closed subset of R2 × {0}, Q ⊂ R3 be a closed set and ρ ∈ M(Q) be such that the
forward operator A defined in (3.13) is S-sufficient. For f ∈ L2(Q, ρ) and λ > 0, the solution to (1.5) is unique.

Proof. It is well known (see e.g. [10], Prop. 3.6) that µλ ∈M(S)3 is a minimizer of Ff,λ if and only if:

A∗(f −Aµλ) = λ
2 uµλ |µλ|-a.e. and

|A∗(f −Aµλ)| ≤ λ
2 everywhere on S.

(3.15)

Moreover, it follows from the strict convexity of the L2-norm that µ′λ ∈ M(S)3 is another solution if and only
if A(µ′λ − µλ) = 0.

Assume for a contradiction that µλ and µ′λ are two distinct minimizers in (1.5) and let µ := µ′λ − µλ. As
µ′λ − µλ = µ is absolutely continuous with respect to |µ|, the Lebesgue decompositions of µλ and µ′λ with
respect to |µ| must have the same singular term. That is, these decompositions are necessarily of the form

dµλ = γd|µ|+ dν, dµ′λ = γ′d|µ|+ dν,

where |ν| is singular with respect to |µ| and γ, γ′ are |µ|-integrable R3-valued functions.
Put for simplicity ψ = (2/λ)(f − A(µλ)) = (2/λ)(f − A(µ′λ)). Thanks to (3.15) we know that uµλ = A∗ψ

and uµ′λ
= A∗ψ, µλ and µ′λ-a.e. respectively. Now, since d|µλ| = |γ|d|µ|+ d|ν| and d|µ′λ| = |γ′|d|µ|+ d|ν|, we

have that

uµd|µ| = dµ = uµ′λ
d|µ′λ| − uµλd|µλ| = A∗ψd|µ′λ| −A∗ψd|µλ| = A∗ψ(|γ′| − |γ|)d|µ|.

Therefore uµ = A∗ψ(|γ′| − |γ|) at |µ|-a.e point, and since |A∗ψ| = 1 on the supports of µλ and µ′λ it holds that
uµ(x) = ±xA∗ψ(x) for |µ|-a.e. x, where the choice of sign ±x has a subscript x to indicate that it may vary
with x.
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From the S-sufficiency of A we know that µ is S-silent. Also, by Corollary 4.2 of [7] (take B = R2×{0} there),
the supports of µλ and µ′λ are contained in a finite collection of points and analytic arcs. In particular, there are
only finitely many rectifiable Jordan curves contained in the support of µ and they are all piecewise analytic.
Thus, applying Theorem 2.8 to µ, we find there are finitely many piecewise analytic oriented Jordan curves
Γ1, · · · ,ΓN with respective unit tangent vector fields τ 1, · · · , τn, and strictly positive real numbers a1, · · · , aN
such that τm = τn on Γm ∩ Γn, H1-a.e. and

dµ =

N∑
n=1

anτnd
(
H1bΓn

)
.

In particular, d|µ| =
∑N
n=1 and

(
H1bΓn

)
and τn(x) = uµ(x) = ±xA∗ψ(x), for |µ|-a.e. x, hence H1-a.e., on Γn.

Fix n and let E be an analytic sub-arc of Γn. Being the unit tangent to an oriented analytic arc, τn(x)
must be an analytic function of x ∈ E, and so is A∗ψ(x) by the real analyticity of A∗ψ, cf. (3.14). Hence,
either τn = A∗ψ or τn = −A∗ψ everywhere on E. Therefore, E is a subset of a trajectory of the autonomous
differential equation ẋ = A∗ψ(x). Moreover, since E is bounded and percursed at unit speed, the corresponding
trajectory extends beyond the endpoints of E, and since two distinct trajectories cannot intersect we conclude
that Γn is smooth and constitutes a single, periodic trajectory. This, however, is impossible because A∗ψ is a
gradient vector field, by (3.14).

When S is planar and EP-1 has a unique solution, Theorem 4.3 from [7] and Theorem 3.8 together imply
the following corollary.

Corollary 3.9. Let S ⊂ R2 × {0} be closed, the forward operator A be S-sufficient, and µ0 ∈ M(S)3. Set
f = Aµ0 and, for e ∈ L2(Q, ρ), set fe := f + e. For λ > 0, there is a unique minimizer µλ,e of (1.4) where f
gets replaced by fe.

If ‖µ‖TV > ‖µ0‖TV for any magnetization µ that is S-equivalent to µ0, then µλ,e (resp. |µλ,e|) converges

to µ0 (resp. |µ0|) in the narrow sense as λ→ 0 and ‖e‖L2(Q)/
√
λ→ 0.

Theorems 3.2 and 3.3, Corollary 3.4, and Lemma 3.5 give sufficient conditions for the uniqueness of solutions
to EP-1. Hence, if µ0 ∈ M(S)3 is carried by a set Z ⊂ S ⊂ R2 × {0}, then we may apply the above corollary
under the following conditions:

(a) H1(Γ ∩ Z) < H1(Γ \ Z) for any rectifiable Jordan curve Γ ⊂ S, or
(b) Z ⊂W ∪

⋃
k∈K Lk where W ⊂ S is purely 1-unrectifiable and the Lk are disjoint line segments such that

the distance from any Lk to any Lj , j 6= k, is greater than the length of Lk, or
(c) S is tree-like.

In particular, it follows from condition (b) that Corollary 3.9 applies when µ0 is carried by a countable collection
of points and sufficiently separated line segments.

We conclude with an example.

Example 3.10. Let v0 = v4 = (−1,−1), v1 = (1,−1), v2 = (1, 1), and v3 = (−1, 1) denote the vertices of the
square [−1, 1]2 and let γi denote the arclength parametrization of the directed line segment from vi to vi+1 for
i = 0, 1, 2, 3. Let µ1 = Rγ0

+ Rγ2
and µ2 = −Rγ1

−Rγ3
and let S be the square [−2, 2]2. By Corollary 3.4 both

µ1 and µ2 are TV -minimal on S. However, µ1 and µ2 are not strictly TV -minimal since µ1 −µ2 is S-silent by
Lemma 2.2 and Theorem 2.8, showing that µ1 and µ2 are S-equivalent. Clearly, any convex combination (1−
α)µ1 +αµ2, α ∈ [0, 1], is also S-equivalent to µ1 and TV -minimal on S. In fact, any TV -minimal magnetization
which is S-equivalent to µ1 is of this form. Indeed, taking µ = µ1 and Z = suppµ1, in (3.7), the only Γ
that makes this inequality an equality is the boundary of [−1, 1]2. Hence, by Theorem 3.3, any TV -minimal
magnetization is of the form µ1 + s(µ2 − µ1) for some s ∈ R and minimality of the total variation forces
0 ≤ s ≤ 1.
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If we take Q = [−1, 1]2 × {1} and ρ = L2bQ then the forward operator A is S-sufficient. Assume further
that in (3.13), v is the unit vector (0, 0, 1)T . Recall the notation R for the rotation by π/2, and for any
µ ∈M(S)2 let R̃µ be defined as 〈R̃µ,φ〉 := 〈µ,R−1 ◦ φ ◦R〉, for any φ ∈ Cc(S,R2). Observe that R−1 = Rt,
which implies that for any parametrized rectifiable curve γ we have R̃Rγ = RRγ and hence, R̃µ1 = −µ2 as

well as R̃µ2 = −µ1. Also note that AR̃µ = (Aµ) ◦R−1, since R commutes with the first two components of
Kv from (3.12). Now, with the notation of Corollary 3.9, set µ0 = (µ1 + µ2)/2, so that f := Aµ0 satisfies
f = −f ◦R−1. If in addition the noise e satisfies e = −e◦R−1, then fe = −fe◦R−1 as well. In this case, we get
that Ffe,λ ◦ (−R̃) = Ffe,λ and thus Theorem 3.8 implies that −R̃µλ,e = µλ,e for every λ > 0. Now, we know

that any weak-∗ limit of minimizers of EP-2 is TV -minimal, provided that both λ and ‖eλ−1/2‖L2(Q,ρ) tend to

0 (see [11], Thms. 2&5). Because the limit should be invariant under −R̃ by what precedes, it must be equal to
(µ1 + µ2)/2. In particular, we get global weak-∗ convergence of both µλ,e and |µλ,e| in this example, as long
as e = −e◦R−1; i.e., when the noise e has the same symmetry as the data.
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