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Inverse problem for the Helmholtz equation and singular sources in the divergence form
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Abstract

We shall discuss an inverse problem where the
underlying model is related to sources gener-
ated by currents on an anisotropic layer. This
problem is a generalization of another motivated
by the recovering of magnetization distribution
in a rock sample from outer measurements of
the generated static magnetic field. The origi-
nal problem can be formulated as inverse source

problem for the Laplace equation [1,2] with sources
being the divergence of the magnetization whereas
the generalization comes from taking the Helmholtz

equation. Either inverse problem is non uniquely
solvable with a kernel of infinite dimension. We
shall present a decomposition of the space of
sources that will allow us to discuss constraints
that may restore uniqueness and propose reg-
ularization schemes adapted to these assump-
tions. We then present some validating experi-
ments and some related open questions.
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1 Introduction

Let £ > 0, Q C R3 be a bounded Lipschitz do-
main, S C 9Q be compact, and G(x) = —%,
a Green function for the Helmholtz equation.
Let H*(0S2) denote the Bessel potential space
of order s and Hj(9f), the space of 1 forms on
082 with coefficients in H*(092).

Given a M € Ly(9Q)3, with support con-
tained in S, define J (M) := GxV-(Mo), where
o denotes the surface measure on 0€). It follows
that J (M) is analytic on R?\ S and locally in-
tegrable. Then, for w = J(M),

Aw + E*w =V - (Mo). (1)

Note that this implies that the kernel of J con-
sist precisely of all M such that V- (Mo) = 0.
Also, w = J (M) satisfies the Sommerfeld radi-

ation condition:

JimJal <8|ax| - zk) w(z)=0.  (2)

If we let v denote the normal vector to 0f2,
we can write M = v M, +Mqyp, with M, := M-v
and Mpr := M — vM,. Note that in this case
My (z) is tangent to O for o-a.e. x € 9§ and
we can define is tangential divergence V- M
weakly. We will denote by M7, the 1-form that
is the flat of My, i.e., for every p € 92 and v
tangent to dQ at p, M’ (p)(v) = Mr(p) - v.

We will restrict ourselves to the case when
M, € HY?(09Q) and V- My € H-/2(0Q).
Noticing that, if M. € H11/2(89) then Vrp -
My € H-1/2(99), we will represent a source as
a pair (M., M) € M := H;/*(09)x HY/2(9).
With a slight abuse of notation we will identify
M with the pair (M, M, ), and think of M as
a subspace of Lo(99)3.

Let SL and DL denote the single and double
layer potentials associated to (1). That is, for
z € R3\OQ, ¢ € H1/2(0Q) and ¢ € H/?(09Q),

SLy(z) = [ Gz —y)Y(y)do(y),

o0
DLo(x) := /a 0, Gla = 0)o)do(y)

where d, , is the normal derivative with respect
to the variable y. Then we have that J(M) =
—DL(MV) + SL(VT . MT).

The following result shows the limitations
for the theoretical inverse problem. Given Q C
R3 \ S compact and a measure p supported on
Q, define Ag : M — Ly(Q,p) as Ag(M) =
J(M)lq.

Theorem 1 Take D a Lipschitz domain con-
taining S with unbounded complement, and Q) C
R3\ S compact. IfR®\ S is connected and either

1. 0D is an analytic surface and QN OD has
Hausdorff dimension>1,

2. or 0D C Q,

then, M belong to the kernel of Aq if and only
ifM,, =0 andVT~MT =0.
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2 Full Bounded Lipschitz Domain

In what follows we will assume that S = 9.

Let j(¢,4) = —DL(¢) + SL(y), for (¢,4) €
HY2(0Q)x H~/2(0Q), and define for ¢ € HY/?(9Q)
and ¢ € H-1/2(09);

Sy(x) :==pv. [ Gz —y)Y(y)do(y),

o0
Ko(z) == p.v. /6 00, Gl = )0 ()
Té = (3,DLe)|oc

Next, let P, P_ : HY/2(0Q) x H-Y2(09) —
HY2(09) x H-Y/2(09) be defined by matrix

multiplication as

lrqg— S

Py (9,v) 3:(21_TK %Id+K/)<fZ),
1 _

P(¢,¢) = < QIdT+K ;Ide’ > < Z >

Then Py, P_ are Calderén projections [4], they
satisfy Py = Id — P_, and we obtain the follow-
ing result:

Theorem 2 Let w = J(M). Then, wlgs\g =
0 if and only if PL(My,Vp - Mrp) = 0, and,
wlq = 0 if and only if P_(M,, V7 -Mr)=0.
3 Decomposition of M

Let w € HE (R3\ Q) satisfy (2) and

loc

Aw + k*w =0 on R\ O

w= <K—i— ;Id) lgq on 012,

where 15q is the constant function with value 1
in 092, and let f = Oy,w. Then can define the
following subspaces of M

Mo={MeM : (My,Vr-Mr)=(0,0)},

My ={M e MygnNM : Pi(M,,Vr-Mr) = (0,0)},
M_={M e MgnM : P_(M,,Vr-Mz) = (0,0)},
where Mg is taken in Lo(9€2)3. Also, there ex-
ists a M that satisfies for every M € H'/2(9€2)3,
(Mo, M) 17290y = (f; M- V) 17290y 11/2(00)

— (K1a0, VT - MIT) 17290y, 1-1/2 (90
which allows us to define My =vect{Mjy}.

Let us observe for instance that when Q is a
ball then My = cv where ¢ is a constant.

Theorem 3 My, M, DM_ and My are pair-
wise orthogonal as subspaces of M and

M=MydMiE&M_dMpg.

Furthermore, when k% is a Neumann eigen-
value for —A in Q and the trace of one eigen-
function on 0N) coincides with 1yq, then Mgy =
0, and hence M = Mo @ (M4 + M_).

4 Partial inversion of the problem

Using the above decomposition it is now clear
that the problem of recovering sources when mea-
surements are only done outside of the sample
is only solvable up to an element of Mg ® M.

Given an original source M, let M denote
the unique element of M_ & My which gener-
ates the same potential as M outside of 2. We
will now give a rough description of a way to
obtain M. Let @ ¢ R\ Q be such that for
every w € J(M), wlg = 0 implies wlga\g = 0
(for example, a dense subset of some type of
analytic surface). Since, J (M)]RS\Q = 0 im-
plies Py (M, ¥V -Mryr) = 0, then the linear op-
erator B, defined from H'/2(9Q) x H~'/2(9%)
to H'/2(0Q) x H~Y2(09) x L} (R3\ Q)3 that

loc

sends (6, to (P_(6,1),j(6,¥)|q), is injec-
tive. Letting w = J(M), then B~1(0,w) is well
defined and such that P, (B~(0,w)— (M, V-
M7)) = 0. Hence, using the definition of My
and the above results, we can recover M.
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